Понятие релятивистской массы. Основные формулы релятивистской механики. Релятивистские энергия и масса

Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы не привели. Сейчас, однако, мы можем доказать, что (как следствие принципа относительности и прочих разумных соображений) масса должна изменяться именно таким образом. (Мы должны говорить о «прочих сооб­ражениях» по той причине, что нельзя ничего доказать, нельзя надеяться на осмысленные выводы, не опираясь на какие-то законы, которые предполагаются верными.) Чтобы не изучать

законы преобразования силы, обратимся к столкновениям частиц. Здесь нам не понадобится закон действия силы, а хватит только предположения о сохранении энергии и импульса. Кроме того, мы предположим, что импульс движущейся ча­стицы - это вектор, всегда направленный по ее движению. Но мы не будем считать импульс пропорциональным скорости, как это делал Ньютон. Для нас он будет просто некоторой функцией скорости. Мы будем писать вектор импульса в виде вектора скорости, умноженного на некоторый коэффициент

p=m 0 v . (16.8)

Индекс v у коэффициента будет напоминать нам, что это функция скорости v. Будем называть этот коэффициент «мас­сой». Ясно, что при небольших скоростях это как раз та самая масса, которую мы привыкли измерять. Теперь, исходя из того принципа, что законы физики во всех системах координат одинаковы, попробуем показать, что формула для m v должна иметь вид m 0 /(1-v 2 /c 2 ).

Пусть у нас есть две частицы (к примеру, два протона), которые между собой совершенно одинаковы и движутся на­встречу друг другу с одинаковыми скоростями. Их общий импульс равен нулю. Что с ними случится? После столкновения их направления движения должны все равно остаться противо­положными, потому что если это не так, то их суммарный вектор импульса будет отличен от нуля, т. е. не сохранится. Раз частицы одинаковы, то и скорости их должны быть оди­наковы; более того, они просто должны остаться прежними, иначе энергия при столкновении изменится. Значит, схема такого упругого обратимого столкновения будет выглядеть, как на фиг. 16.2,а: все стрелки одинаковы, все скорости равны. Предположим, что такие столкновения всегда можно подго­товить, что в них допустимы любые углы 0 и что начальные скорости частиц могут быть любыми.

Фиг. 16.2. Упругое столкновение одинаковых тел, движущихся с равными скоростями в противоположных направлениях, при раз­личном выборе систем координат.

Далее, напомним, что одно и то же столкновение выглядит по-разному, смотря по тому, как повернуты оси. Для удобства мы так повернем оси, чтобы горизонталь делила пополам угол между направлениями частиц до и после столкновения (фиг. 16.2,б). Это то же столкновение, что и на фиг. 16.2,а, но с повернутыми осями.

Теперь начинается самое главное: взглянем на это столкно­вение с позиций наблюдателя, движущегося на автомашине со скоростью, совпадающей с горизонтальной компонентой ско­рости одной из частиц. Как оно будет выглядеть? Наблюдателю покажется, что частица1 поднимается прямо вверх (горизон­тальная компонента у нее пропала), а после столкновения падает прямо вниз по той же причине (фиг. 16.3, а).

Фиг. 16.3. Еще две картины того же столкновения (видимые из дви­жущихся автомашин).

Зато частица 2 движется совсем иначе, она проносится мимо с колоссальной скоростью и под малым углом (но этот угол и до и после столк­новения одинаков). Обозначим горизонтальную компоненту скорости частицы 2 через и, а вертикальную скорость части­цы 1 - через w.

Чему же равна вертикальная скорость utg частицы 2? Зная это, можно получить правильное выражение для импульса, пользуясь сохранением импульса в вертикальном направлении. (Сохранение горизонтальной компоненты импульса и так обеспечено: у обеих частиц до и после столкновения эта ком­понента одинакова, а у частицы 1 она вообще равна нулю. Так что следует требовать только сохранения вертикальной скорости utga.) Но вертикальную скорость можно получить, просто взглянув на это столкновение с другой точки зрения! Посмотрите на столкновение, изображенное на фиг. 16.3, а из автомашины, которая движется теперь налево со скоростью и. Вы увидите то же столкновение, но перевернутое «вверх ногами» (фиг. 16.3, б). Теперь уже частица 2 упадет и подскочит со скоростью w, а горизонтальную скорость и приобретет частица 1. Вы уже, конечно, догадываетесь, чему равна горизонтальная скорость utg ; она равна w (1- u 2 /c 2) [см. уравнение (16.7)]. Кроме того, нам известно, что изменение вертикального им­пульса вертикально движущейся частицы равно

p=2m w w

(двойка здесь потому, что движение вверх перешло в движение вниз). У частицы, движущейся косо, скорость равна v, ее компоненты равны u и w (1-u 2 /c 2 ), а масса ее m v . Изменение вертикального импульса этой частицы р"=2т v w (1-u 2 /с 2), так как в соответствии с нашим предположением (16.8) любая компонента импульса равна произведению одноименной ком­поненты скорости на массу, отвечающую этой скорости. Но суммарный импульс равен нулю. Значит, и вертикальные импульсы должны взаимно сократиться, отношение же массы, движущейся со скоростью w, к массе, движущейся со скоростью v, должно оказаться равным

m w /m v =(1-u 2 /c 2). (16.9).

Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, m w m 0 , a m v m u . Окончательный результат таков:

Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольныхw, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника

Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства приw- >0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты пред­положим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).

Фиг. 16.4. Две картины неупругого соударения тел равной массы.

Массы тел до столкновения равны, как мы знаем, m 0 / (1- w 2 /c 2 ). Предположив сохраня­емость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образо­ванного тела. Представим себе бесконечно малую скорость и, поперечную к скоростям w (можно было бы работать и с ко­нечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, дви­гаясь в лифте со скоростью -u . Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неиз­вестной массой М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М, движущаяся вверх со скоростью u , много меньшей и скорости света и скорости w. Импульс должен остаться прежним; по­смотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2m w u, а потом стал р"= M u u . Но M u из-за малости u, по существу, совпадает с М 0 . Благодаря сохранению импульса

М 0 =2m w . (16.11)

Итак, масса тела, образуемого при столкновении двух одина­ковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не правда ли, поразительно! Оказывается, сохранение импульса в столк­новении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!

Видимо, интернет-баталии насчет того, растет ли масса тела со скоростью или нет, будут вестись вечно. Уж не раз объясняли подробно, как, во-первых, этот вопрос правильно формулируется, а во-вторых, как на него ответить. Лев Борисович Окунь потратил немало усилий, чтобы максимально доступным языком объяснить всем сомневающимся, что современная физика использует только одно, релятивистски-инвариантное понятие массы и что понятие растущей со скоростью «релятивистской массы» — это педагогический вирус. Он даже опубликовал на этот счет отдельную книжку . Но только всё равно приходят новые люди и всё начинается сначала.

Однако в этот раз, в комментариях к одной новости на Элементах, этот разговор принял уже несколько иной оборот. Теперь высказывается мнение, что, мол, это Окунь «постановил», что масса от скорости не зависит, в то время как великие физики прошлого (перечисляются Борн, Паули, Фейнман) прямо писали, что масса со скоростью растет. Типа, это что же, Окунь единолично изменил базовое понятие физики?!

По этому поводу чувствую, что нужно высказаться еще раз, — и, надеюсь, в последний раз, — по поводу «релятивистской массы».

Во-первых, эти баталии касаются не физического явления или свойства, а термина. Они не несут никаких последствий для самой физики, они имеют лишь педагогическую ценность. И Паули, и Фейнман, и Окунь, и все остальные физики, которые занимаются физикой элементарных частиц или другими релятивистскими разделами физики, — все они полностью сходятся друг с другом в формулах, выражающих физические законы. Поэтому не надо приписывать Окуню мнимых «революций» в релятивистской механике.

Во-вторых, все физики, работа которых опирается на релятивистскую механику, в частности, физика частиц, гравитация, атомная физика и т.п., уже много десятилетий оперируют только понятием массы как лоренц-инвариантной величины. Масса — это присущая телу характеристика, не зависящая от системы отсчета и эквивалентная энергии покоя (дальнейшие подробности — на страничке про инвариантную массу). Энергия — со скоростью растет, энергия покоя и масса — нет.

Несмотря на то, что формально можно использовать величину «релятивистская масса» (т.е. просто энергия, деленная на c 2), она не несет никакой полезной нагрузки, а только плодит ненужные сущности и затрудняет словесное описание формул. Так было принято задолго до Окуня и давным-давно стало стандартом в физике. В этом смысле, все учебники, которые повторяют слова про массу, растущую со скоростью, отстали от современной терминологии более чем на полвека.

На всякий случай, чтоб не думали, что Окунь тут идет против остальных, вот от Мэтта Стрэсслера, видного физика и автора одного из самых известных блогов по физике частиц.

В-третьих, понятие релятивистской массы не только пустое в научном смысле, но и вредное — в педагогическом. Масса, растущая со скоростью, формирует у человека яркое, интуитивно привлекательное, но неправильное понимание явлений, развивает неправильную физическую интуицию. Если человек собирается заниматься физикой всерьез, то ему всё равно придется переучиться. Но даже если не собирается, эта интуиция будет постоянно ему подсовывать неверное толкование некоторых физических ситуаций. Вот несколько примеров, когда интуиция, основанная на релятивистской массе, приводит к неправильному предсказанию или к несостыковке с другими физическими утверждениями.

  • Если тело движется со скоростью, очень близкой к скорости света, и его масса растет (а продольный размер сокращается), то значит, рано или поздно радиус Шварцшильда превысит размер тела и оно схлопнется в черную дыру. Разумеется, ничего подобного не происходит.
  • Физики говорят, что хиггсовское поле отвечает за массу частиц (заметьте, без каких-либо эпитетов насчет массы). Получается, что чем быстрее частица движется, тем сильнее на нее действует хиггсовское поле. Это тоже неверно.
  • В согласии с концепцией релятивистской массы, все фотоны тоже обладают какой-то массой. Получается, хиггсовское поле действует и на фотон? Нет конечно, фотон остается безмассовым — это важнейшее следствие хиггсовского механизма Стандартной модели.
  • Физики говорят, что все электроны идентичны, и поэтому, в частности, работает принцип запрета Паули. Но как же они могут быть идентичны, если у них разные массы?
  • Электрон в неподвижном атоме, в целом, неподвижен, т.е. в целом он никуда не летит. Но в согласии с квантовой механикой, он там как-то движется, причем у него там нет какой-то определенной скорости. Так какую массу мы ему будем приписывать?
В общем, если у вас есть ещё какие-то сомнения, то, пожалуйста, примите как факт следующее утверждение. Сами физики давно договорились, как и что называть и что в этом случае от чего зависит. Физики также накопили вековой опыт преподавания релятивистской механики и знают подводные камни, на которые натыкаются студенты. Весь этот опыт показывает, что понятие релятивистской массы вредное. Если вы хотите его придерживаться, — ради бога. Но только учтите, что вы идете против рекомендаций всей современной физики и что вы постоянно рискуете ошибиться, воспринимая это понятие слишком буквально.

Инвариантная масса - исключительно важная характеристика коллектива частиц, описывающая их разлет относительно друг друга. Без измерения и обсуждения инвариантной массы не обходится практически никакой анализ современных коллайдерных данных. Однако прежде, чем рассказывать об инвариантной массе, начнем с одного недоразумения, касающегося понятия массы.

Масса не растет со скоростью!

Есть широко распространенное убеждение, что масса растет со скоростью; ее часто называют «релятивистской массой». Это убеждение основано на неправильной интерпретации связи между энергией и массой: мол, раз с увеличением скорости растет энергия, значит растет и масса. Это утверждение встречается не только во многих популярных книжках, но и в школьных и даже в вузовских учебниках физики.

Это утверждение неверно (для пущей педантичности см. приписку ниже мелким шрифтом). Масса - в том виде, в котором это слово понимает современная физика, и в особенности физика элементарных частиц, - от скорости не зависит . От скорости зависит энергия частицы и ее импульс, при околосветовых скоростях меняются законы динамики и кинематики. Но масса частицы - величина, которая связана с полной энергией E и импульсом p формулой

m 2 = E 2 /c 4 – p 2 /c 2 ,

остается неизменной. В популярных материалах эту величину называют «массой покоя» и противопоставляют ее «релятивистской массе», но подчеркнем еще раз: это разделение проводится только в популярных материалах и в некоторых курсах физики. В современной физике нет никакой «релятивистской массы», в ней есть только «масса», определенная этим уравнением. Термин «релятивистская масса» - это неудачный прием популяризации физики, давным-давно уже от настоящей физики оторвавшийся.

Для читателя, который уже наслышан об этой проблеме, а может быть, даже поучаствовал в спорах по поводу нее, такая точка зрения может показаться несколько «экстремистской». Ведь формально мы можем ввести понятие релятивистской массы и переписать все уравнения с помощью нее, а не настоящей массы, и никакой математической ошибки мы при этом не совершим. Так почему же «релятивистскую массу» лишают права на существование?

Дело в том, что этот термин бесплоден с научной точки зрения и вреден с педагогической. Во-первых, опыт показывает, что он вовсе не упрощает понимание теории относительности (если под пониманием подразумевать что-то большее, чем просто знание нескольких слов). Во-вторых, он сбивает с толку «житейскую интуицию» непосвященного читателя и часто приводит его к ошибочным умозаключениям (например, о том, что тело, движущееся со скоростью, достаточно близкой к скорости света, неизбежно превратится в черную дыру из-за «возросшей массы»). Этот термин подспудно настраивает интуицию читателя на принятие выводов о том, что с частицей могут происходить изменения, зависящие от системы отсчета. И наконец, - повторим снова! - «релятивистская масса» не соответствует ни одной реальной характеристике частицы, которые знает современная физика; это исключительно прием популяризации физики.

Поэтому с образовательной точки зрения намного полезнее вообще не вводить этот термин.

Подробнее про происхождение и вред этого заблуждения см. в многочисленных публикациях выдающегося физика Льва Борисовича Окуня, например в заметке «Релятивистская» кружка .

Инвариантная масса

Пусть у нас есть две частицы с энергиями E 1 и E 2 и импульсами p 1 и p 2 (жирный шрифт указывает на то, что импульс - вектор). Это могут быть две сталкивающиеся или две разлетающиеся частицы, неважно. Их массы, разумеется, вычисляются по энергиям и импульсам в соответствии с приведенной выше формулой.

Мы хотим теперь что-то узнать о свойстве этой пары частиц как единой системы . Мы можем написать полную энергию E 12 и полный импульс p 12 этой системы, E 12 = E 1 + E 2 , p 12 = p 1 + p 2 , при этом импульсы суммируются как вектора. А значит, мы можем вычислить и некую похожую на массу величину m 12 по формуле

m 12 2 = E 12 2 /c 4 – p 12 2 /c 2 .

Эта величина m 12 и называется инвариантной массой пары частиц. Ее важнейшее свойство состоит как раз в том, что она инвариантна, то есть не зависит от системы отсчета, в которой мы проводим вычисление (хотя энергии и импульсы зависят).

Обратим внимание, что инвариантная масса вовсе не равна сумме масс двух частиц! Более того, несложно доказать, что m 12 ≥ m 1 + m 2 , причем равенство возможно только тогда, когда две частицы движутся с одинаковыми скоростями (то есть первая частица покоится с точки зрения второй). Итак, для пары частиц у нас имеются три независимых характеристики, не зависящие от системы отсчета: m 1 , m 2 и m 12 .

Если мы изучаем не две частицы, а больше, то инвариантные массы по этим правилам можно сосчитать не только для всей системы целиком, но и для любой пары, тройки и вообще любой комбинации этих частиц. Заметьте, что сосчитав эти массы, мы еще ничего не утверждаем про сами частицы, про их происхождение, про то, в каких «отношениях» они состоят друг с другом. Это просто дополнительные кинематические величины, которые не зависят от системы отсчета.

Инвариантная масса как «метка» происхождения частиц

Инвариантная масса характеризует, насколько бурно частицы разлетаются друг от друга , насколько интенсивен этот разлет (или их столкновение, если речь идет о сталкивающихся частицах). Говоря совсем упрощенно, если разлет частиц представить себе как «микровзрыв» коллектива частиц, то инвариантная масса характеризует «энергетический баланс» этого микровзрыва. Для примера на рис. 1 показаны две ситуации, в которых энергии двух частиц E 1 и E 2 и модули их импульсов |p 1 | и |p 2 | одни и те же, но инвариантные массы разные.

Главная польза от инвариантной массы в том, что она помогает узнать происхождение этих частиц : получились ли они от распада какой-то одной промежуточной нестабильной частицы или же родились в разных процессах. В первом случае их инвариантная масса примерно совпадает с массой этой нестабильной частицы, а во втором случае она может быть произвольной. Этот прием сплошь и рядом используется при анализе результатов столкновений элементарных частиц; именно с помощью него мы узнаем о быстротечном существовании нестабильных частиц и умеем отделять разные типы событий друг от друга.

Возьмем ставший уже знаменитым пример: поиск хиггсовского бозона на Большом адронном коллайдере через его распад на два фотона. Если хиггсовский бозон рождается в столкновении, он может распасться на два фотона (рис. 2, слева). Но такая же пара фотонов может получиться и сама по себе, безо всяких промежуточных частиц, просто за счет излучения фотонов кварками (рис. 2, справа). Детектор в обоих случаях увидит пару фотонов и не сможет сказать, за счет чего они появились. Просто детектируя фотоны, мы не сможем доказать, что у нас действительно иногда происходит рождение и распад бозона Хиггса.

На помощь приходит изучение инвариантной массы двух фотонов m γγ . В каждом конкретном событии с двумя фотонами надо вычислить эту инвариантную массу, а затем подсчитать, сколько событий с какой инвариантной массой у нас получилось, и построить график: количество событий в зависимости от m γγ . Если хиггсовского бозона в данных нет (или пока не видно), эта зависимость будет плавной - ведь энергии и импульсы двух фотонов не связаны, поэтому инвариантная масса может получиться какой угодно. Если же хиггсовский бозон есть, на графике должен проступить бугорок. Этот бугорок - это те дополнительные события, которые получились именно за счет рождения бозона Хиггса и его распада на два фотона. Положение бугорка укажет на массу бозона, а его высота - на интенсивность этого процесса.

На рис. 3 показаны данные детектора ATLAS по результатам 2011-го и 2012 года в области инвариантной массы двух фотонов от 100 до 160 ГэВ. Виден более-менее плавный фон, уменьшающийся с ростом m γγ и вызванный как раз независимым рождением двух фотонов. И на этом фоне хорошо заметен нужный бугорок в районе 125 ГэВ. Он не слишком сильный, но благодаря маленьким погрешностям у него большая статистическая значимость, а значит, существование новой частицы, распадающейся на два фотона, можно считать экспериментально доказанным.

Дополнительная литература:

  • Г. И. Копылов. «Всего лишь кинематика», вып. 11

Об упомянутом «эффекте» слышал, пожалуй, каждый, кто закончил среднюю общеобразовательную школу. В любом учебнике физики за 11 класс мы найдём изложение основ релятивистской механики и некоторых следствий из них, в числе которых обязательно присутствуют три: сокращение длины, замедление времени и злополучное увеличение массы. Обычный школьник, конечно, не заметит подвоха: для него вся эта чепуха одинаково непривычна и далека от жизни, тем более что доказательства этих следствий в школьных учебниках, как правило, не приводятся. В лучшем случае он примет всё на веру: мол, если учёные так говорят, значит, так и есть, им виднее. В худшем -- решит, что физики дураки и/или шарлатаны и займёт место в легионе фриков под знамёнами к.т.н.-ов-антиСТОшников.

В действительности же настоящие учёные, по крайней мере не выжившие из ума, ничего о росте массы релятивистских тел не говорят. Попытаемся разобраться.

Специальная теория относительности, как известно, базируется на двух принципах: принципе относительности (гласящем, что все физические процессы протекают одинаково во всех инерциальных системах отсчёта) и утверждении о постоянстве скорости света (которое следует из опытов Майкельсона, Майкельсона - Морли и десятков других, не известных широкой общественности). Из этих двух аксиом с фатальной неизбежностью вытекают формулы замены координат при переходе от одной системы отсчёта к другой, движущейся относительно первой с постоянной скоростью, - так называемые преобразования Лоренца . Из последних же, в свою очередь, легко получаются известные формулы, связывающие расстояния и промежутки времени в этих двух системах:

содержащими всё тот же характерный квадратный корень. Понять смысл возникшего в последних формулах параметра легко даже не глядя на их вывод. Достаточно заметить, что при малых скоростях (), с которыми мы только и имеем дело в повседневной жизни, корни в знаменателях почти не отличаются от единицы, и если пренебречь этим отличием, выражение для импульса приобретёт хорошо известный каждому уважающему себя и окружающих гражданину вид , откуда ясно, что представляет собой не что иное как обычную массу тела.

Из этого места и растут ноги у спекуляций, связанных с массой. Казалось бы, естественно просто констатировать, что законы динамики на самом деле имеют несколько более сложный вид, чем мы привыкли думать, а ньютоновским выражениям предоставить почётное место важного частного случая. Но нашлись оригиналы, которые вместо этого предложили: а давайте будем считать, что импульс и в общем случае выражается той же простой формулой из ньютоновской механики. Для этого достаточно всего лишь называть массой не привычное всем число , а выражение . А для числа придумаем новое прикольное название: масса покоя . Это типа то, что остаётся от новой, переменной массы при нулевой скорости. Такое переопределение оказалось возможным благодаря тому, что масса, несмотря на своё фундаментальное значение в физике, не может быть измерена непосредственно. Взвешивая тело на весах, мы в действительности определяем его вес , то есть силу, с которой оно давит на чашу весов под действием земной гравитации, и только зная, что вес пропорционален массе, можем вычислить последнюю (за нас это обычно делают производители весов, градуируя шкалу в килограммах или фунтах). Аналогично массу элементарной частицы можно определить только по её импульсу, измеряя изменение скоростей при её столкновении с частицей известной массы. Невозможно поэтому исходя из экспериментальных данных однозначно сказать, чем обусловлен релятивистский сверхприрост импульса: "деформацией" его зависимости от скорости или увеличением массы, и вопрос переходит таким образом в чисто терминологическую плоскость.

Первопроходцы теории относительности воспользовались указанным произволом в пользу сохранения ньютоновской формулы. Было ли это сделано в попытках унификации обозначений или с целью эпатировать публику ("Смотрите, в СТО даже масса меняется! видите, какая физика крутая и интересная штука!"), мне неизвестно, равно как и имя законодателя этой моды. Однако идея эта оказалась настолько неудачной, что все порядочные физики, не сговариваясь, очень быстро от неё отказались, и вот почему.

Во-первых, переопределением массы удалось сохранить внешне совпадающий с классическим вид только одной-единственной формулы, выражающей импульс. Даже пресловутое выражение для энергии (которое в действительности имеет нетривиальный смысл именно когда под подразумевается масса покоя) хоть внешне и простое, но на классическое уже не похоже совсем. Если же мы попытаемся спасти, например, второй закон Ньютона, то и вовсе придём к необходимости ввести две релятивистские массы: продольную и поперечную. Впрочем, необузданная фантазия авторов некоторых учебников покоряет и эту высоту.

Во-вторых, при таком подходе фактически исчезает различие между существенно разными величинами -- массой и энергией, т. к. они теперь отличаются всего лишь незначимым постоянным множителем .

В-третьих, возникает нетихая терминологическая путаница с двумя видами масс, так что временами даже честным людям волей-неволей приходится оговаривать, какая из них имеется в виду.

В-четвёртых, в физике вполне естественно наибольшее значение имеют инвариантные величины, то есть такие, которые не зависят от выбора системы координат. От массы, меняющейся при переходе в другую систему отсчёта, не больше проку, чем от линейки, которая меняет масштаб при перемещении в пространстве.

Наконец, в квантовой теории поля масса (точнее, её квадрат) наряду со спином определяет вид преобразования волновой функции элементарной частицы под действием группы Пуанкаре , то есть в некотором смысле устанавливает связь между динамикой частиц и геометрическими свойствами пространства-времени. Выражением этого факта является известное соотношение

которое можно рассматривать как современное определение массы. Разумеется, это касается инвариантной массы.

Итак, физики недолго думая отправили концепцию переменной массы на свалку и продолжили заниматься своими делами. Но, к сожалению, этого не заметили те, кто уже без оглядки нёс учение Эйнштейна в народ -- журналисты, популяризаторы науки и, что самое прискорбное, авторы школьных и вузовских учебников. Эти последние приносят наибольший вред, создавая комки каши в головах образованных слоёв населения, вследствие чего даже от выпускников физфаков можно услышать, что масса равна энергии, а температура -- это мера нагретости тела. Например, особенно преуспевший на ниве педагогического вредительства Д. В. Сивухин, несмотря на гаргантюанский размах -- одной только классической механике в его курсе посвящён такой объём, что первым томом можно подпирать покосившийся сарай, -- оперируя понятием релятивистской массы, ни полсловом не упоминает даже о самой возможности альтернативной трактовки. Этот же подход повсеместно используется педагогами в технических вузах. Конечно, сам по себе этот факт не может привести к ошибкам в расчётах и падению "Протонов", но точно не способствует последовательному усвоению физики студентами и является одним из симптомов низкого общего уровня её преподавания. Неудивительно поэтому, что политехи являются главными питомниками физических фриков.

В заключение сто́ит упомянуть ещё об одном широко растиражированном усилиями журналистов заблуждении -- будто бы масса всех элементарных частиц каким-то образом порождается бозонами Хиггса. Это тоже полная ерунда, правда, объяснить на популярном уровне, как всё обстоит на самом деле -- задача из бронхов, которая ещё ждёт своего Перельмана. А в двух словах об этом можно почитать на Элементах и в блоге Игоря Иванова .

P. S.: Когда статья была уже почти готова, выяснилось, что не меня одного достал коллективный Сивухин. Так, небезызвестный академик Л. Б. Окунь ещё с 80-х годов борется с реликтами идеи переменной массы и посвятил этой теме ряд статей , , , к которым я и отсылаю любопытных и скептически настроенных читателей за авторитетным мнением подробностями.

После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может использоваться двояко. С одной стороны, это та масса, которая фигурирует в классической физике, с другой - можно ввести так называемую релятивистскую массу как меру полной (включая кинетическую) энергии тела . Эти две массы связаны между собой соотношением:

где - релятивистская масса, m - «классическая» масса (равная массе покоящегося тела), v - скорость тела. Введённая таким образом релятивистская масса является коэффициентом пропорциональности между импульсом и скоростью тела :

Аналогичное соотношение выполняется для классических импульса и массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Введённая таким образом релятивистская масса в дальнейшем привела к тезису, что масса тела зависит от скорости его движения .

В процессе создания теории относительности обсуждались понятия продольной и поперечной массы частицы. Пусть сила, действующая на частицу, равна скорости изменения релятивистского импульса. Тогда связь силы и ускорения существенно изменяется по сравнению с классической механикой:

Если скорость перпендикулярна силе, то а если параллельна, то где - релятивистский фактор. Поэтому называют продольной массой, а - поперечной.

Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая массу покоя. В частности, выделяются следующие недостатки введения термина «релятивистская масса» :

§ неинвариантность релятивистской массы относительно преобразований Лоренца;

§ синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;

§ наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналога второго закона Ньютона в виде

§ методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;

§ путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть - другое.

Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной , и в научной литературе. Следует, правда, отметить, что в научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.

17. Законы сохранения энергии и импульса в СТО.

18. Колебания в механике. Упругие и квазиупругие силы. Собственные колебания.

Колебания - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств колеблющихся систем (осцилляторов)

[править]По физической природе

§ Механические (звук, вибрация)

§ Электромагнитные (свет, радиоволны, тепловые)

§ Смешанного типа - комбинации вышеперечисленных

[править]По характеру взаимодействия с окружающей средой

§ Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явлениерезонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

§ Свободные (или собственные) - это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

§ Автоколебания - колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от свободных колебаний является, то что их амплитуда определяется свойствами самой системы, а не начальными условиями.

§ Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

§ Случайные - колебания, при которых внешняя или параметрическая нагрузка является случайным процессом.

Характеристики

§ Амплитуда - максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, (м)

§ Период - промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), (с)

§ Частота - число колебаний в единицу времени, (Гц, с −1) .

Период колебаний и частота - обратные величины;

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота (рад/с, Гц, с −1) , показывающая число колебаний за единиц времени:

§ Смещение - отклонение тела от положения равновесия. Обозначение Х, Единица измерения метр.

§ Фаза колебаний - определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

КВАЗИУПРУГАЯ СИЛА - направленная к центру О сила. модуль к-рой пропорционален расстоянию r от центра О до точки приложения силы (F=-cr ), где с - постоянный коэф., численно равный силе, действующей на единице расстояния. К. с. является силой центральной и потенциальной с силовой ф-цией U= -0,5cr 2 . Примерами К. с. служат силы упругости, возникающие при малых деформациях упругих тел (отсюда и сам термин "К. с."). Приближённо К. с. можно также считать касательную составляющую силы тяжести, действующей на матем. маятник при малых его отклонениях от вертикали. Для материальной точки, находящейся под действием К. с., центр О является положением её устойчивого равновесия. Выведенная из этого положения точка будет в зависимости от нач. условий или совершать около О прямолинейные гармонич. колебания, или описывать эллипс (в частности, окружность).

Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации.

В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

[править]Закон Гука

Основная статья: Закон Гука

В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид:

где - жёсткость тела, - величина деформации.

В словесной формулировке закон Гука звучит следующим образом:

Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.

[править]Нелинейные деформации

При увеличении величины деформации закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения или сжатия.

Собственные колебания, свободные колебания, колебания в механической, электрической или какой-либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или начальной скорости). Характер Собственные колебания определяется главным образом собственными параметрами системы (массой, индуктивностью, ёмкостью, упругостью). В реальных системах вследствие рассеяния энергии Собственные колебания всегда затухающие, а при больших потерях они становятся апериодическими.

19. Уравнения движения простейших механических колебательных систем без трения.

Колебательная система - физическая система, в которой могут существовать свободные колебания

20. Энергия колебательной системы.

21. Свободные колебания. Уравнение движения колебательных систем с жидким трением.

22. Коэффициент затухания. Логарифмический декремент. Добротность.

Найдем отношение значений амплитуды затухающих колебаний в моменты времени t и (рис. 3.1):

где β– коэффициент затухания.

Натуральный логарифм отношения амплитуд, следующих друг за другом через период Т, называется логарифмическим декрементом затухания χ:

Выясним физический смысл χиβ.

Время релаксации τ время, в течение которого амплитуда А уменьшается в e раз .

Следовательно, коэффициент затухания β есть физическая величина , обратная времени , в течение которого амплитуда уменьшается в е раз.

Пусть N число колебаний, после которых амплитуда уменьшается в e раз. Тогда

Следовательно, логарифмический декремент затухания χ есть физическая величина, обратная числу колебаний, по истечении которых амплитуда А уменьшается в e раз.

Если χ = 0,01, то N = 100.

При большом коэффициенте затухания происходит не только быстрое уменьшение амплитуды, но и заметно увеличивается период колебаний. Когда сопротивление становится равным критическому , ато круговая частота обращается в нуль (w=0), а (t-), колебания прекращаются. Такой процесс называетсяапериодическим (рис. 3.2).

Отличия в следующем. При колебаниях тело, возвращающееся в положение равновесия, имеет запас кинетической энергии . В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления, трения.

Добро́тность - характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

Общая формула для добротности любой колебательной системы:

,

§ - резонансная частота колебаний

§ - энергия, запасённая в колебательной системе

§ - рассеиваемая мощность.

23. Вынужденные колебания. Резонанс.

Вынужденные колебания - колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частотаопределяются внутренними свойствами самой автоколебательной системы.