История возникновения электрической лампочки. История создания лампы накаливания

1. «Яркая идея».

Томас Эдисон был не единственным изобретателем лампы накаливания. Но именно лампочка, запатентованная Эдисоном в 1880 году, стала популярной на рынке, принесла свет в дома и озолотила Эдисона, которому на тот момент было 33 года.


2. «Светлая работа».

В конце 19 века Эдисон объединился с Томпсон-Хьюстон Электрик Компани в результате чего появилась компания Дженерал Электрик. Первоначально ламповый завод, расположенный в Хариссоне, штат Нью-Джерси, был построен для производства лампочек, изобретенных Эдисоном, но в 1930 году был реконструирован в завод по производству радиоприемников для филиала Дженерал Электрик. В 1976 году завод закрыли и в настоящее время на этом месте расположен торговый центр.


3. «Золотая пора».

В 1928 году в фильме «Наши танцующие дочери» Джоан Кроуфорд и Джонни Макк Браун танцевали уже под вольфрамовыми лампами. Вольфрамовые нити накаливания, изобретенные в 1903 году, сделали лампы ярче и долговечнее, что идеально подходило для освещения новоиспеченных голливудских звезд.


4. Яркий свет и большой крах.

1929 год был ознаменован 50 летним юбилеем лампочки Эдисона. По этому поводу было запланировано всенародное празднование. С мая по октябрь проводились мероприятия, посвященные годовщине. Высшей точкой празднования «Золотого юбилея» стал тщательно спланированный банкет для 500 выдающихся ученых и интеллектуалов Америки. Вечер, организованный президентом Гувером, прошел с блестящим успехом. По сути, юбилей стал прощальным тостом золотому веку американских изобретений, так как спустя девять дней .


5. Освещая путь.

В 30-х годах электрический свет получил широкое распространение в быту, включая самые первые фары. Не элегантно – да, но не хуже дадаистской моды.


7. Роскошь.

Послевоенный американский бум не остановился исключительно на совершенствовании лампочек. Многие производители потратили десятилетия, чтобы улучить вспышку фотокамер. И в 1955 году Дженерал Электрик доказала, что не существует лучшего способа рекламы нового изобретения, чем продемонстрировать его в ушах красивой девушки.


8. В 50-х,60-х годах Лайн клаб, расположенный в Майами, объявил одну местную девушку, которая стала представителем ежегодной благотворительной компании «свет чтобы видеть» «Мисс-свет». В 1954 году короной Мисс Свет была награждена студентка Университета Майами, которая передала эстафетную палочку Сэнди Верч. В 1955 Верч дошла до финала в чемпионате Мисс Америка.


Вопрос 1 12 f 1144

История создания лампочки.

В начале 19 в. русский физик и электротехник сделал

открытие, которое позволило использовать электрическую энергию

для освещения.

Если на стеклянную плитку положить два древесных угля и

металлическими направителями, сообщенными с обоими полюсами

приближать их, то между ними появляется пламя в форме дуги. Но при

горении, угольные стержни сгорали и дуга гасла. Лишь через 70 лет

русский электротехник построил приспособление для

автоматической регулировки угольных стержней.

В 1876 г. русский изобретатель на выставке в Лондоне демонстрировал электрическую свечу. Он расположил угли не напротив, а рядом, чтобы дуга горела только вверху. Для запала применялась тонкая пластинка из материала, плохо проводящего ток. Совершенствуя своё изобретение, Яблочков для равномерного сгорания стержней использует переменный ток. Так же он разработал схему соединения нескольких ламп с помощью индукционных катушек, работающих по принципу трансформации. К 1880 г. «русский свет» освещал многие города мира.

В начале 70-х г. 19 в. создал новые электрические лампы - лампы накаливания. В небольшой стеклянный шар впаяны две медных проволочки, соединенные с источником тока. Между ними закреплен тонкий угольный стержень. Когда протекал электрический ток, стержень благодаря большому сопротивлению раскалялся и светил ярким светом. Но такие лампы горели недолго - 20-30 минут. Усовершенствуя, создает улучшенные образцы, которые горели несколько часов. Русская академия наук в 1874 г. присудила Лодыгину за лампу накаливания Ломоносовскую премию. В 1890 г. предложил изготовлять лампы накаливания с металлическими нитями из тугоплавких металлов: вольфрама, молибдена, осмия, иридия, палладия. Но металлическая нить при высокой температуре быстро сгорала.

http://pandia.ru/text/78/256/images/image007_12.jpg" width="140 height=210" height="210">

В настоящее время мы пользуемся усовершенствованными лампами: энергосберегающими.

Вопрос 2 12 f 1144

Электричество: путь на кухню

Эмиль Ратенау, выдающийся инженер и

http://pandia.ru/text/78/256/images/image010_30.gif" alt="Картинка 15 из 15" width="60" height="21 src=">

Все началось с электрической лампочки.

Эмиль Ратенау, основатель AEG. В 1881 г. на

Международной выставке в Париже он впервые

увидел электрическую лампочку Эдисона и был

потрясен. Ратенау первым получил лицензию на

использование изобретения Эдисона в Германии

и в 1883 г. основал Немецкое Общество Эдисона в Берлине, которое в 1887 году было переименовано в Объединенное Электрическое Общество (AEG, Allgemeine Elektrizitaets-Gesellschaft). Эту славную аббревиатуру и по сей день видят покупатели на наиболее совершенных образцах бытовой техники (в наши дни торговая марка AEG принадлежит концерну Electrolux). В 1889 году эта компания предстала перед общественностью в Берлине, продемонстрировав на выставке первые электрические нагревательные приборы. Были показаны такие приборы, как щипцы для завивки волос, зажигалки, утюги и чайники. Каталог AEG за 1896 год содержал уже 80 различных наименований продукции, среди которых были электрические плиты, кофеварки и яйцеварки. Уже в то время технологии и дизайн были впечатляющими. В начале века AEG стала первой промышленной компанией, нанявшей на работу дизайнера.

Первый образец электрической плиты был продемонстрирован на Всемирной выставке в Чикаго в 1893г., но ажиотажа не вызвал.

Выглядела та электрическая плита

AEG 1908года довольно необычно.

Это была тумбочка, на которую сверху

устанавливался некий механизм, который

чем-то напоминает современные

электрические колонки. Такая подставка

под чайники с торцевыми крутящимися

конфорками.

Привычных нам горелок и спиралей там

Не было – вместо них использовались

Металлические пластины, которые

ставились на металлические ножки на

расстоянии нескольких сантиметров от

самой плиты. И вот на эту пластинку

ставилась посуда, чтобы готовить.

Первая электрическая плита фирмы AEG (1908 г.)

В 1908г. фирма AEG объединила небольшие приспособления для приготовления пищи в единый прибор - электрическую плиту.

Именно с этого момента ведет свой отсчет история бытовых кухонных электрических плит.

http://pandia.ru/text/78/256/images/image013_28.gif" alt="Картинка 15 из 15" width="156 height=53" height="53">

http://pandia.ru/text/78/256/images/image015_5.jpg" width="300" height="159 src=">.jpg" alt="Картинка 104 из 116" width="170" height="216 src=">

Итальянский физик и физиолог Алессандро Вольта

родился в городке Комо близ Милана.

Учился в школе ордена иезуитов в Комо,

где обнаружил способности к риторике и

проявил интерес к естественным наукам.

В гг. преподавал физику в гимназии в Комо,

в 1779 г. стал профессором университета в Павии.

С 1815 г. – директор философского факультета в Падуе.

Работы Вольта посвящены электричеству, химии и физиологии. Вольта изобрёл ряд электрических приборов (электрофор, электрометр, конденсатор, электроскоп и др.). В 1776 г. Вольта обнаружил и исследовал горючий газ (метан).

В гг., заинтересовавшись "животным электричеством", открытым Л. Гальвани, Вольта провёл ряд опытов и показал, что наблюдаемые явления связаны с наличием замкнутой цепи, состоящей из двух разнородных металлов и жидкости. Вольта считал причины «гальванизма » физическими, а физиологические действия – одними из проявлений этого физического процесса.

Проведя опыты с разными парами электродов, Вольта установил, что физиологическое раздражение нервов тем сильнее, чем дальше отстоят друг от друга два металла в следующем ряду: цинк, оловянная фольга, олово, свинец, железо, латунь и т. д. до серебра, ртути, графита. Этот знаменитый ряд напряжений (активностей) Вольта и составлял ядро эффекта; мышца лягушки была лишь пассивным, хотя и очень чувствительным электрометром, а активными звеньями являлись металлы, от контакта которых и происходила их взаимная электризация.

Проводя многочисленные сравнительно-физиологические опыты, Вольта наблюдал у животных большую электрическую возбудимость нервов по сравнению с мышцами, а также гладкой мускулатуры кишечника и желудка по сравнению со скелетной. Он обнаружил () электрическую раздражимость органов зрения и вкуса у человека. Эти работы имели большое значение в истории методов физиологического эксперимента.

В 1800г. Вольта изобрёл так называемый Вольтов столб – первый источник постоянного тока.

Аппарат Вольта был необычайно прост.

Кружок металлического цинка накладывался на кружок из серебра или меди, хотя бы на обыкновенную монету. Затем на металлические кружки накладывался кружок из картона, из кожи или сукна, пропитанный соленой водой.

На этот кружок опять накладывался серебряный,

на него снова цинк, а потом еще раз сырая кожа.

Так повторялось десять, двадцать, тридцать раз

подряд - серебро, цинк, влажная кожа.

Получался столб - «вольтов столб», как его потом

назвали. И это бесхитростное нагромождение

металлических и неметаллических кружков давало

электричество непрерывно и безотказно.

Столб Вольта можно было построить и по-другому - положив его как бы набок. Десяток, два или любое другое количество стеклянных банок, наполненных соленой водой или разбавленной кислотой, устанавливались подряд одна за другой.

http://pandia.ru/text/78/256/images/image021_21.gif" alt="Рисунок1.png" width="217" height="132 src=">«Сделай батарейку».

Для опыта нам понадобилось:

прочное бумажное полотенце, пищевая фольга,

ножницы, медные монеты, поваренная соль,

вода, два изолированных медных провода,

маленькая лампочка (1,5 В).

Результат оправдал наши ожидания!

Изобретение вольтова столба доставило Вольта всемирную славу и оказало огромное влияние не только на развитие науки об электричестве, но и на всю историю человеческой цивилизации. Вольтов столб возвестил о наступлении новой эпохи – эпохи электричества.

Вольта был избран членом Парижской и других академий, Наполеон сделал его графом и сенатором Итальянского королевства. Именем Вольта названа единица электрического напряжения – вольт.

Вопрос 4 12 f 1144

Бенджамин Франклин. Громоотвод.

Громоотвод был изобретен в 1752 году американским ученым, писателем, государственным деятелем, дипломатом, одним из «отцов-основателей» США Бенджамином Франклином. Фигура очень разносторонняя и до сих пор очень американцами уважаемая. Недаром портрет Франклина украшает стодолларовую купюру США. Он этой чести, безусловно, достоин.

В чем суть действия громоотвода? Это высокий металлический штырь, нижний конец которого врыт в землю. Перед ударом молнии между облаком и землей возникает разность электрических потенциалов. При этом отрицательный заряд накапливается на острие громоотвода и притягивает положительный заряд грозового облака.

Молния всегда бьет в самый близкорасположенный к облаку предмет, обладающий потенциалом противоположной полярности, поскольку в этом месте толщина изолирующей воздушной прослойки меньше всего. Молниеотвод не работает только в случае возникновения шаровой молнии. Но это чрезвычайно редкое атмосферное явление, поэтому ущерб, наносимый шаровыми молниями, минимален.

Франклин родился 17 января 1706 года в американском городе Бостоне в многодетной семье бедного ремесленника и был младшим ребенком. Учиться маленькому Бенджамину пришлось лишь до 10 лет. После начальной школы Франклин работал в мыловарне отца, в типографии старшего брата и даже сотрудничал в качестве журналиста с газетой, выпускаемой этой типографией.

http://pandia.ru/text/78/256/images/image025_1.jpg" width="413" height="623">

Вопрос 5 12 f 1144

Четыре великие изобретения древнего Китая: бумага, книгопечатание, порох и компас . Именно эти открытия способствовали тому, что многие направления культуры и искусств, ранее доступные лишь богачам, стали достоянием широких масс. Изобретения древнего Китая сделали возможными и дальние путешествия, что позволило открывать новые земли.

Первый прототип компаса, как считается, появился во времена династии Хань (202 до н. э. - 220 н. э.), когда китайцы стали использовать магнитный железняк, ориентированный на север-юг. Правда, использовался он не для навигации, а для гадания. В древнем тексте «Луньхэн», написанном в 1 веке н. э., в главе 52 древний компас описывается так: «Этот инструмент напоминает ложку, и если его положить на тарелку, то его ручка укажет на юг».

http://pandia.ru/text/78/256/images/image027_3.jpg" alt="Английский компас 18-го века" width="192" height="153">Если установить иголку таким образом, что она сможет беспрепятственно вращаться в горизонтальной и вертикальной плоскостях, то направление, в котором указывает иголка, будет показывать и склонение, и уклон локального геомагнитного поля.

Для того чтобы иголка оставалась в

горизонтальном положении (так она будет

точно указывать направление на северный

магнитный полюс), её обычно уравновешивают

специально под особенности магнитного поля

того региона, в котором компас будет

эксплуатироваться.

Некоторые производители балансируют компасы под один из пяти существующих регионов Земли, однако модели со специальным глобальным балансированием могут использоваться по всему миру.

На протяжении более тысячи лет магнитный компас указывал направление движения для большинства путешественников. В настоящее время компас является одним из старейших навигационных приборов и все еще широко используется капитанами кораблей, пилотами, бойскаутами и туристами. Но благодаря современной микроэлектронной технологии, компас получил новые области применения. Электронные компасы используются как самостоятельные устройства, компоненты к многоэлементным навигационным системам и в качестве встроенных модулей GPS приёмников. Многие легковые и грузовые машины по всему миру оснащаются электронными компасами. Несмотря на то, что GPS приемники в комплекте с одной антенной обладают высокой точностью определения своего местоположения, они не в состоянии определить свой курс – направление движения самого приемника или платформы, на которой он установлен. На помощь в данной ситуации приходит компас! Когда GSP сигналы блокируются всевозможными физическими препятствиями, навигационная система с поддержкой GPS может указать направление для дальнейшего движения на основании данных, полученных от компаса.

В то время как миллионы GPS приемников используются по всему миру, почтенный компас все еще остается важнейшим навигационным прибором. Вне зависимости от того применяется простой игольный или электронный компас, встроенный в приемник, пользователи GPS всегда смогут определить свое местоположение и при движении, и в стационарном положении.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые .

Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.

Намного удобнее в этом смысле были лампочки накаливания. Устройство их всем известно: электрический ток, проходя через тонкую нить, раскаливает ее до высокой температуры, благодаря чему она начинает ярко светиться. Еще в 1820 году французский ученый Деларю изготовил первую такую лампу, в которой накаливаемым телом служила платиновая проволока.

После этого в течение полувека лампы накаливания почти не использовались, поскольку не могли найти подходящего материала для нити. Поначалу наиболее удобным казался уголь. В 1873 году русский электротехник Лодыгин сделал лампочку с нитью из роторного угля. Он же первый начал откачивать из баллона воздух. В конце концов, ему удалось создать первую лампочку накаливания, получившую некоторое практическое применение, но она оставалась еще очень несовершенной.

В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Процесс изготовления лампочки Эдисона был очень сложным. Нить помещали в стеклянный колпачок между двумя платиновыми электродами, вплавленными в стекло (дорогой платиной приходилось пользоваться потому, что она имела одинаковый со стеклом коэффициент теплового расширения, что было очень важно для создания герметичности). С помощью ртутного насоса из лампочки выкачивали воздух, так что в ней оставалось не более одной миллиардной того воздуха, который содержался в ней при нормальном давлении. Когда выкачивание заканчивалось, лампочку запаивали и насаживали на цоколь с контактами для вкручивания в патрон (и патрон, и цоколь, а также другие элементы электрического освещения, сохранившиеся без изменений до наших дней – выключатели, предохранители, электрические счетчики и многое другое – были также изобретены Эдисоном). Средняя долговечность лампочки Эдисона составляла 800-1000 часов непрерывного горения.

Почти тридцать лет лампочки изготавливались описанным выше способом, но будущее было за лампочками с металлической нитью. Еще в 1890 году Лодыгин придумал заменить угольную нить металлической проволокой из тугоплавкого вольфрама, имевший температуру накала 3385 градусов. Однако промышленное изготовление таких лампочек началось только в XX веке.

Лампа накаливания - электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

Из достоинств ламп накаливания можно выделить следующее:

· относительно невысокая стоимость;

· мгновенное зажигание при включении;

· небольшие габаритные размеры;

· широкий диапазон мощностей.

Один из недостатков ламп накаливания - большая яркость самой лампы, что негативно воздействует на зрение при взгляде на лампу. Но этот недостаток можно быстро устранить - достаточно применить рассеиватель.

Существенный недостаток - небольшой срок службы лампы - до 1000 часов. Исходя из опыта использования ламп, можно отметить, что в большинстве случаев лампа накаливания выходит из строя, не прослужив и нескольких сотен часов.

Основным же недостатком ламп накаливания является низкий коэффициент полезного действия. Только лишь десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток; большинство электрической энергии преобразуется в тепловую энергию.

Время неограниченных и дешевых энергоресурсов заканчивается и нельзя позволить и дальше использовать лампы накаливания с таким низким световым кпд. На замену приходят другие источники света - галогенные лампы накаливания, компактные люминесцентные лампы (КЛЛ), металлогалогенные лампы и светодиоды.

Галогенная лампа - лампа накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или йода). Это повышает время жизни лампы до 2000-4000 часов, и позволяет повысить температуру спирали. При этом рабочая температура спирали составляет примерно 3000 К. Эффективная светоотдача большинства массово производимых галогенных ламп выше, чем ламп накаливания.

Электрический ток, проходя через тело накала (обычно - вольфрамовую спираль), нагревает его до высокой температуры. Нагреваясь, тело накала начинает светиться. Однако из-за высокой рабочей температуры атомы вольфрама испаряются с поверхности тела накала (вольфрамовой спирали) и осаждаются (конденсируются) на менее горячих поверхностях колбы, ограничивая срок службы лампы.

В галогенной лампе окружающий тело накала йод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама, препятствуя осаждению последних на колбе. Этот процесс является обратимым - при высоких температурах вблизи тела накала соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются либо на самой спирали, либо вблизи неё. В результате атомы вольфрама возвращаются на тело накала, что позволяет повысить рабочую температуру спирали (для получения более яркого света), продлить срок службы лампы, а также уменьшить габариты по сравнению с обычными лампами накаливания той же мощности.

Галогенные лампы одинаково хорошо работают на переменном и постоянном токе. При применении плавного включения срок службы может быть повышен до 8000-12 000 часов.

Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы.

Компактная люминесцентная лампа (КЛЛ) - люминесцентная лампа, имеющая изогнутую форму колбы, что позволяет разместить лампу в светильнике меньших размеров. Такие лампы нередко имеют встроенный электронный дроссель. Компактные люминесцентные лампы разработаны для применения в конкретных специфических типах светильников, либо для замены ламп накаливания в обычных. Эти лампы рекомендованы для применения в больницах, учебных заведениях, на промышленных и производственных предприятиях.

Кроме ламп с оттенками белого, предназначенных для общего освещения, выпускаются также:

· Лампы с цветным люминофором (красным, жёлтым, зелёным, голубым, синим, лиловым) - для светового дизайна, художественной подсветки зданий, вывесок, витрин.

· Так называемые «мясные» лампы с розовым люминофором - для подсветки витрин с мясными продуктами, что увеличивает их внешнюю привлекательность.

· Ультрафиолетовые лампы - для ночной подсветки и дезинфекции в медицинских учреждениях, казармах и т. д., а также в качестве «чёрного света» для светового дизайна в ночных клубах, на дискотеках и т. п.

МОУ СОШ №9

Лампа накаливания и история ее

изобретения

Шевелева Милана

Александровна

2012 год г. Тихвин

История изобретения

Принцип действия

Конструкция

КПД и долговечность

Литература

История изобретения

§В 1809 году англичанин Деларю строит первую лампу накаливания 1809 году (с платиновой спиралью).

§В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.

§В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.

§В 1860 году английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

§11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

§В 1876 году Павел Николаевич Яблочков разработал один из вариантов электрической угольной дуговой лампы, названный «свечой Яблочкова». Преимуществом конструкции было отсутствие необходимости в механизме, поддерживающем расстояние между электродами для горения дуги. Электродов хватало примерно на 2 часа.

§Английский изобретатель Джозеф Уилсон Суон получил в 1878 году <#"justify">Принцип действия

Лампа накаливания - электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить лампы накаливания излучает электромагнитное излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение. Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы накаливания и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410°C) и, очень редко, осмий (3045°C). При практически достижимых температурах 2300-2900°C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура. В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампы накаливания делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

Конструкция

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Полость колбы (вакуумированная или наполненная газом)

Тело накала

5.Электроды (токовые вводы)

Крючки - держатели тела накала

Ножка лампы

Внешнее звено токоввода,предохранитель

Корпус цоколя

Изолятор цоколя (стекло)

Контакт донышка цоколя

КПД и долговечность

Галогенная лампа

Двойная спираль лампы мощностью 200 Вт (сильно увеличено)

лампа накаливания

Двойная спираль (биспираль) лампы Osram 200 Вт с токовводами и держателями (увеличено)

Литература

1.

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=15&sqi=2&ved=0CJUBEBYwDg&url=http%3A%2F%2Flights-on.ru%2Flampi%2Flampi-nakalivanija%2F28175&ei=v6CNT_rqKMyG-wbA1vn9Dw&usg=AFQjCNEzqWLjmpEbj209-oMXsFOeSzJwvQ&sig2=IrbpH2wgyJjnVy5eiBSrCQ

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CEsQFjAB&url=http%3A%2F%2Felectrolibrary.narod.ru%2Fsvetrazvitie.htm&ei=daGNT4bBIM2a-gaqkPX-Dw&usg=AFQjCNEcg5f-Wd5KUCqbBYyjRW246151pA&sig2=ENB3pspm4tXAa0-6x0Sx3w

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CFgQFjAD&url=http%3A%2F%2Fwww.energy-etc.ru%2Fcontent%2Fmaterials%2Findex19-183.html&ei=daGNT4bBIM2a-gaqkPX-Dw&usg=AFQjCNHCeI84cuCIZaG-U0oisEZ6JXI7kA&sig2=NA156uCVQOb90ANGsOWt2A

МОУ СОШ №9

Лампа накаливания и история ее

изобретения

Шевелева Милана

Александровна

2012 год г. Тихвин

История изобретения

Принцип действия

Конструкция

КПД и долговечность

Литература

История изобретения

В 1809 году англичанин Деларю строит первую лампу накаливания 1809 году (с платиновой спиралью).

В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.

В 1854 году немец Генрих Гёбель разработал первую современную лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.

В 1860 году английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1875 году В.Ф.Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).

В 1876 году Павел Николаевич Яблочков разработал один из вариантов электрической угольной дуговой лампы, названный свечой Яблочкова. Преимуществом конструкции было отсутствие необходимости в механизме, поддерживающем расстояние между электродами для горения дуги. Электродов хватало примерно на 2 часа.

.,.">Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

1879.188040..,.">Во второй половине1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В1880 году он возвращается к угольному волокну и создаёт лампу со временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни его лампы, вытесняют использовавшееся до тех пор газовое освещение.

В 1890-х годах А.Н.Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов. Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом).

С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна).

Принцип действия

Лампа накаливания - электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой