Электрические машины постоянного тока. Территория электротехнической информации WEBSOR

Машины постоянного тока

Электротехническая промышленность в настоящее время выпускает электрические машины постоянного тока для работы в различных усло­виях. Корабельные машины имеют особенности конструкции отдельных узлов, но общая конструктивная схема этих машин одинакова. На ри­сунке (1.4) приведены продольный и поперечный разрез машины нор­мального исполнения. Машина постоянного тока состоит из 2–х основ­ных частей: неподвижной – статора и вращающейся – якоря. Между ни­ми всегда имеется воздушный зазор.

Рис. 1.4 - ДПТ в разрезе

Статор, являющийся индуктором, т.е. такой частью машины, в котором наводится магнитное поле, сос­тоит из станины I, главных 2 и добавочных 3 полюсов. К статору относятся также подшипниковые щиты 7 с подшипниками 11. На статоре крепятся щеточный аппарат 9 и коробка выводов 10.

Якорь состоит из сердечника якоря 4 и коллектора 8, насажен­ных на вал 6. В машинах с самовентиляцией на валу крепится венти­лятор 12.

Станина – служит в качестве магнитопровода и одновременно является конструктивной основой, к которой крепятся главные и добавочные полосы и подшипниковые щиты. Она представляет собой полый цилиндр, отлитый или сваренный из чугуна или стали. У крупных машин стани­на делается разъемной. На кораблях для удобства обслуживания и ремонта применяются также машины с поворотной станиной. Часть ста­нины, по которой замыкаются магнитные потоки главных и добавочных полюсов, называется ярмом 1. Вместе со станиной отливаются лапы 13 для крепления машины к фундаменту. На станине устанавливается один или несколько рымов 14 для подъема машины.

Главные полюсы предназначены для создания в машине магнитного по­тока необходимой величины. Главный полюс (рисунок 1.5) состоит из сер­дечника 1 и катушек обмоток возбуждения 2,3. Со стороны, обращенной к якорю, сердечник заканчивается полюсным наконечником 4, с помощью которого обеспечивается требуемое распределение магнитной индукции в воздушном зазоре.


Рисунок 1.5

Сердечник полюсов набирается из листов электротехнической стали толщиной 0,5÷1,0 мм., покрытых изоляционным лаком для уменьшения потерь от вихревых токов, вызванных пульсацией магнитного потока из–за зубчатости якоря. Листы стали спрессовывают и скрепляют шпильками. Катушки обмоток возбуждения наматываются на изолирующий кар­кас 5, а затем надеваются на сердечник. По отношению к обмотке яко­ря обмотки возбуждения могут включаться параллельно или последо­вательно. Катушки параллельной обмотки 2 состоят из большого чис­ла витков провода малого сечения. Катушки последовательной обмот­ки 3 состоят из малого числа витков провода большого сечения, по которым проходит большой ток якоря. Для улучшения изоляции катуш­ки компаундируют, т.е. пропитывают изоляционными лаками (компаун­дами) в вакууме при повышенной температуре, а затем сушат в специ­альных печах. Полюс в собранном виде крепится к станине болта­ми 6.

Добавочные полюсы служат для улучшения коммутации машины, т.е. обеспечивают безыскровую работу щеток и коллектора. Они состоят из сердечника 1 и полюсной катушки 5 (рисунок 1.6) и устанавливаются между главными полюсами по линии геометрической нейтрали. Сердеч­ник имеет наконечник 2 определенной формы. Катушка изготавливает­ся из полосовой меди большого сечения, так как она включается пос­ледовательно в цепь якоря и по ней проходит большой ток. Величина зазора δ между полюсом и якорем регулируется при наладке ра­боты машины с помощью магнитных и немагнитных прокладок 4 между полюсом и станиной. Добавочные полюсы крепятся к станине болтами 3.

Рисунок 1.6

Якорь состоит из сердечника магнитопровода, обмотки 5, вала 6 и конструктивных деталей для их крепления.

Сердечник якоря представляет собой стальной цилиндр, набранный из штампованных листов 1 (рисунок 1.7) электротехнической стали толщи­ной 0,5 мм, которые изолируются друг от друга лаком для уменьше­ния потерь от вихревых токов.

Рисунок 1.7

В листах штампуются пазы для размещения в них обмотки якоря и отверстия для насаживания сердечника на вал якоря, для стяжных шпилек и осевой вентиляции. Пакет железа якоря крепится на валу шпонкой, а с торцов стягивается нажимными кольцами. В боль­ших машинах якорь состоит из нескольких пакетов штампованных лис­тов, между которыми делаются промежутки для лучшего охлаждения ма­шины (радиальная вентиляция). Часть сердечника якоря, занятая па­зами, называется зубцовой зоной.

Обмотка якоря выполняется из изолированного провода круглого или прямоугольного сечения. Она состоит из отдельных элементов – сек­ций (рисунок 1.8), образованных из одного или нескольких витков.

Рисунок 1.8

Сек­ции изготавливаются по шаблонам. Часть секции 1, заложенная в пазы сердечника якоря, называется пазовой или активной частью. Часть секции 2, расположенная вне сердечника – в воздухе и соединяющая активные части, называется лобовой частью (лобовые соединения). Концы секций припаиваются к коллекторным пластинам. Для крепления секций в пазах применяются деревянные, гетинаксовые или текстоли­товые клинья. Кроме витковой изоляции обмотка имеет пазовую изо­ляцию от сердечника. Лобовые части закрепляются с помощью прово­лочного бандажа.

Электроизоляционные материалы, применяемые для изоляции об­моток, по степени термостойкости делятся на классы, которые допус­кают определенную температуру нагрева. В машинах постоянного тока применяются в основном классы А, В, С и Н. Коллектор (рисунок 1.9) набирается из медных пластин I, изолиро­ванных друг от друга и от вала, на котором он крепится, с помощью миканитовых прокладок 8 и манжет 5,7. Состороны, обращенной к валу, пластины имеют форму ласточкиного хвоста 2. В два конусооб­разных углубления коллектора вставляются изолированные нажимные конусы 3,4, которые стягивают коллекторные пластины в осевом нап­равлении. В собранном виде коллектор спрессовывают в горячем сос­тоянии, после чего обтачивают для придания ему строго цилиндричес­кой формы. В зависимости от размера якоря и коллектора концы сек­ций обмотки впаиваются в коллекторные пластины непосредственно или через специ

Коллектор (рисунок 1.9) набирается из медных пластин I, изолиро­ванных друг от друга и от вала, на котором он крепится, с помощью миканитовых прокладок 8 и манжет 5,7. Состороны, обращенной к валу, пластины имеют форму ласточкиного хвоста 2.

Рисунок 1.9

В два конусооб­разных углубления коллектора вставляются изолированные нажимные конусы 3,4, которые стягивают коллекторные пластины в осевом нап­равлении. В собранном виде коллектор спрессовывают в горячем сос­тоянии, после чего обтачивают для придания ему строго цилиндричес­кой формы. В зависимости от размера якоря и коллектора концы сек­ций обмотки впаиваются в коллекторные пластины непосредственно или через специальные медные соединения – петушки 9. Коллектор жестко крепится на валу ротора рядом с сердечником якоря.

Щеточное устройств о– предназначено для обеспечения электрической связи между неподвижными зажимами, соединенными с внешней цепью, и вращающейся обмоткой якоря (через коллектор) (рисунок 1.10).

Рисунок 1.10

Оно состоит из щеток 1, щеткодержателей 3, пальцев 5, траверсы 6 и соединительных шин. Непосредственный контакт с коллектором 2 имеет щетка. Она выполняется обычно из специальным образом обработан­ной смеси угля, графита и других компонентов в виде прямоугольной призмы и помещается в обойму щеткодержателя 4. Щетка может пере­мещаться в обойме в радиальном по отношению к коллектору направ­лении и для плотного прилегания прижимается к нему пружиной через нажимной рычаг. Щеткодержатели крепятся к пальцам 5, которые за­делываются в траверсу 6 через изоляционные втулки 7. На одном пальце может быть от 2 до 10 щеток, которые для равномерного из­носа коллектора располагаются на его поверхности в шахматном по­рядке и соединяются с пальцами медными гибкими тросиками. Число пальцев всегда равно числу главных полюсов. Пальцы, имеющие оди­наковую полярность, соединяются посредством соединительной шины, от которой делается отвод в клемную коробку машины или к обмотке дополнительного полюса.

Траверса может крепиться к подшипниковым щитам, станине или фундаментной плите. Крепление позволяет поворачивать всю систему щеток относительно станины.

Клемная коробка . В клемной коробке устанавливается изоляционная панель с клеммами, к которым подсоединяются выводы обмоток машины для соединения с внешней электрической сетью.

Реакция якоря.

При работе машины постоянного тока в режиме холостого хода (I а =0) ток в обмотке якоря практически отсутствует и в магнит­ной цепи машины действует лишь одна МДС обмотки возбуждения F o . Магнитное поле машины в этом случае является симметричным отно­сительно полюсов и не зависит от направления вращения машины и расположения щеток на коллекторе (рис. 1).


Рис. 1 - Работа машины постоянного тока в режиме холостого хода

Обмотка возбуждения является сосредоточенной на главных полю­сах и любая замкнутая магнитная линия основного потока охваты­вает всю сумму токов обмотки. МДС такой обмотки в пределах по­люсного деленияτ постоянна и равна F o /τ (рис. 1.б). Распределение магнитной индукции поля вдоль окружности якоря зависит от величины воздушного зазора и приближенно показано на рис. 1.б.

При нагрузке машины по обмотке якоря протекает ток, который создает собственное магнитное поле. Поэтому магнитный поток в воздушном зазоре и пространственное распределение магнитного поля при нагрузке машины будет определяться совместным намагничивающим действием полюсов и якоря. Магнитный поток и распределение резуль­тирующего поля в воздушном зазоре будут уже иными, чем при хо­лостом ходе. Воздействие МДС якоря F a на основное магнитное поле машины называется реакцией якоря.

На рис.2 показано поле, соз­даваемое токами в проводниках якоря при отсутствии МДС главных полюсов, когда щетки стоят на геометрической нейтрали qq . Под каждым полюсом располагается часть обмотки, в проводниках кото­рой проходит ток одного направления. Как видно из рис.2, ось поля якоря совпадает с осью щеток, обуславливающих токораздел в якоре. При щетках, установленных на геометрической нейтрали, кар­тина поля якоря симметрична относительно продольной и попереч­ной осей машины. Ось полученного поля направлена по поперечной оси qq , поэтому такое поле якоря называют поперечным, а ре­акцию якоря – поперечной.

Если наложить поле якоря на поле главных полюсов, то получим картину результирующего поля (рис.3).

Как видно из этого рисунка поле при нагрузке смещается по направлению вращения в генераторе (Г) и против направления вращения в двигателе (М), распределяясь несимметрично относительно оси полюсов. Под набе­гающим краем полюса генератора поле ослабляется, а под сбегаю­щим усиливается. В двигательном режиме наоборот. Под воздейст­вием поперечной реакции якоря физическая нейтраль (т.е. действительная, на которой В=0) смещается на некоторый угол β и занимает положение mm . У современных машин с добавочными полюсами щетки устанавливаются на геометрической нейтрали. Однако вследствие неточной установки щеточной траверсы может иметь мес­то некоторый сдвиг щеток относительно геометрической нейтрали. В этом случае распределение токов якоря относительно главных по­люсов становится несимметричным (рис.4).

МДС якоря F a , нап­равленную всегда по линии щеток, можно разделить на иве состав­ляющие: поперечнуюF aq , направленную по оси qq , образующую поперечную реакцию якоря и продольную F ad , направленную вдоль оси dd , создающую продольную реакцию якоря. При сдвиге щеток с нейтрали в направлении вращения якоря продольная МДС якоря ге­нератора действует навстречу МЛС возбуждения, т.е. размагничи­вает машину; при сдвиге щеток против вращения действует согласно с МДС возбуждения, т.е. намагничивает машину. В двигательном ре­жиме получается обратная картина.

При сдвиге щеток с геометрической нейтрали возникает также реакция добавочных полюсов. В генераторах она воздает размагни­чивающий эффект при сдвиге щеток по направлению вращения якоря и намагничивающие – при сдвиге против вращения якоря. Добавоч­ные полюса в этом случае начинают частично выполнять роль глав­ных полюсов.

Таким образом, под действием реакции якоря происходит изме­нение магнитного потока машины и перераспределение поля в воз­душном зазоре. Это оказывает влияние на мгновенные значения ЭДС. отдельных секций якоря и результирующую ЭДС его обмотки. Для устранения вредного влияния реакции якоря на работу машины используются добавочные полюсы, последовательная и компенса­ционная обмотки.

Электромашины > Теория

Машины постоянного тока

Электрические машины постоянного тока предназначены для преобразования электрической энергии как в механическую, так и обратно. В этом проявляется принцип обратимости электрических машин: если на зажимы подать напряжение от постороннего источника тока, то машина работает как двигатель; если же ее якорь привести во вращение от постороннего механического первичного двигателя, то с зажимов машины снимается напряжение, т. е. она работает как генератор. Поэтому в первом случае они называются двигателем, а во втором - генератором. По своей конструкции генератор постоянного тока ничем не отличается от двигателя.

Принцип работы генератора

В рамке, вращающейся в постоянном магнитном поле, возбуждается переменный ток; следовательно, переменный ток возбуждается и в обмотке якоря. Его преобразуют в постоянный ток с помощью коллектора. Принципиальная схема этого процесса показана на рисунке. Как видно, при повороте рамки на 180° э. д. с. индукции внутри рамки изменит знак. Но при этом и полукольца повернутся на 180°, вследствие чего полярность щеток не изменится. В цепи возникает пульсирующий ток одного направления i(t) . Если на якоре разместить еще одну обмотку, как показано на рисунке пунктиром, то пульсации напряжения во внешней цепи сгладятся и ток будет почти постоянным. В реальном генераторе обмотка якоря содержит несколько десятков витков, присоединенных по определенной схеме к многопластинчатому коллектору, состоящему из такого же числа пластин. В этом случае пульсации тока совершенно ничтожны и во внешней цепи течет постоянный ток.

Принцип работы электродвигателя

На проводник с током, помещенный в магнитное поле, действует сила, которую называют силой Ампера. , из-за наличия силы Ампера вращающий момент, действующий на рамку, пропорционален силе тока в рамке, ее размерам, индукции магнитного поля, в котором она вращается, и зависит от угла поворота рамки.
Это свойство рамки используют в электродвигателях, преобразующих энергию электрического тока в механическую. В технических машинах постоянного тока рамки укладывают в пазах цилиндра, набранного из пластин листовой стали, называемого якорем
3 машины. Начала и концы рамок припаивают к изолированным друг от друга пластинам разрезанного на части широкого медного кольца, названного коллектором 1 . Коллектор укрепляют на общей оси с якорем. С помощью угольных стержней - "щеток" 2 , которые касаются коллекторных пластин, концы рамок соединяются с внешней цепью. Магнитное поле, в котором вращается якорь, создается током, протекающим по обмотке возбуждения индуктора, состоящего из сердечника 4 и обмотки возбуждения 5 . Индуктор закреплен на станине машины 6 .

Режимы работы генератора

У генератора различают три режима работы: при независимом возбуждении (обмотка возбуждения питается от отдельного источника напряжения); самовозбуждение (обмотка возбуждения включается параллельно якорю); смешанное возбуждение (при наличии двух обмоток возбуждения - последовательной и параллельной). На рисунке приведены характеристики зависимостей напряжения якоря от тока, соответствующие этим режимам работы генератора.

Регулирование частоты вращения двигателя может осуществляться тремя способами: изменением напряжения; магнитного потока (применимо только к двигателям параллельного и смешанного возбуждения) и добавочного сопротивления в цепи якоря.
Наиболее экономичный способ - регулирование напряжения на зажимах якоря.
В момент пуска ЭДС якоря равна нулю I п = U я / R я , что в 10-30 раз больше номинального тока. Поэтому для ограничения тока на время пуска в цепь якоря включают добавочное сопротивление, называемое пусковым. Так как с ростом скорости ток снижается, то в качестве пускового сопротивления используется регулировочный реостат, имеющий ряд ступеней.
Направление вращения двигателя можно поменять переключением полярности якоря или обмотки возбуждения.
Повысить обороты двигателя выше номинальных можно ослаблением магнитного потока, зона регулирования ограничивается возрастанием тока возбуждения.

Реостатный пуск двигателя

Системы возбуждения

Свойства и характеристики двигателей постоянного тока существенно зависят от того, как меняется магнитный поток при изменении механической нагрузки двигателей. Характер магнитного потока определяется способом возбуждения.
В машинах постоянного тока различают четыре системы возбуждения:

  • параллельное или шунтовое;
  • последовательное или сериесное;
  • смешанное или компаундное;
  • независимое.

Двигатели с последовательным возбуждением обладают большим пусковым моментом, т. е. вращающим моментом в момент пуска, когда скорость вращения якоря равна нулю. Это делает их незаменимыми во всех видах электротранспорта, где необходимо большое тяговое усилие при трогании с места. Однако частота вращения якоря двигателя с последовательным возбуждением резко меняется при изменении нагрузки, что в ряде случаев нежелательно.
У двигателей с параллельным возбуждением скорость вращения якоря в широких пределах не зависит от нагрузки и может плавно регулироваться за счёт изменения силы тока в обмотке возбуждения, что достигается регулирующим реостатом. Это свойство двигателей с параллельным возбуждением определяет область их применения в качестве электропривода всевозможных станков и агрегатов, где требуется плавная регулировка скорости вращения и не нужен большой пусковой момент.

Электрические машины постоянного тока.

Устройство электрических машин

Постоянного тока. Обратимость машин

По назначению электрические машины постоянного тока делятся на генераторы и двигатели.

Генераторы вырабатывают электрическую энергию, поступающую в энергосистему; двигатели создают механический вращающий момент на валу, который используется для привода различных механизмов и транспортных средств.

Электрические машины обратимы. Это значит, что одна и та же машина может работать и как генератор, и как двигатель. Поэтому можно говорить об устройстве машин постоянного тока, не рассматривая отдельно устройство генератора или двигателя.

Свойство обратимости не следует противопоставлять определенному назначению машины, которая обычно проектируется и используется либо как двигатель, либо как генератор. Значительно реже находят применение машины, предназначенные для работы как в генераторном, так и в двигательном режимах. Это так называемые стартер-генераторы, которые устанавливаются на некоторых подвижных объектах.

Генератор и двигатель отличаются расчетными и конструктивными особенностями. Поэтому использование двигателя в качестве генератора или генератора в качестве двигателя приводит к ухудшению эксплуатационных характеристик машин, в частности к снижению коэффициента полезного действия.

В любой машине постоянного тока четко выделяются подвижная и неподвижная части. Подвижную (вращающуюся) часть машины называют ротором , неподвижную - статором .

Часть машины, в которой индуцируется электродвижущая сила, принято называть якорем, а часть машины, в которой создается магнитное поле возбуждения,- индуктором. Как правило, в машине постоянного тока статор служит индуктором, а ротор - якорем.

Статор машины постоянного тока называют также станиной. Станину изготовляют из магнитопроводящего материала (обычно литая сталь); он выполняет две функции, являясь, во-первых, магнитопроводом, по которому проходит магнитный поток возбуждения машины, и, во-вторых, основной конструктивной деталью, в которой размещаются все остальные детали. Изнутри к станине крепятся полюсы. Полюс машины состоит из сердечника, полюсного наконечника и катушки. При прохождении по катушкам постоянного тока в полюсах индуцируется магнитный поток возбуждения. Помимо главных полюсов в машинах повышенной мощности (более 1 кВт) устанавливаются дополнительные полюсы меньших размеров, предназначенные для улучшения работы машины. Катушки дополнительных полюсов включают последовательно с обмоткой якоря.

Сердечник якоря и коллектор кренятся на одном валу. Стальной вал якоря опирается на подшипники, закрепленные в боковых щитках машины. В свою очередь боковые щитки крепятся болтами к статору.

Для уменьшения вихревых токов и связанных с ними тепловых потерь сердечник якоря набирают из тонких листов электротехнической стали, изолированных друг от друга лаковым покрытием. В теле якоря сверлят вентиляционные каналы, по которым проходит охлаждающий воздух. В пазы сердечника якоря укладывают проводники обмотки якоря, соединенные с коллекторными пластинами. Коллектор набирают из медных пластин, разделенных. миканитовыми прокладками. Поверхность медных пластин специально обрабатывают, чтобы повысить их устойчивость к истиранию.

Электрическое соединение вращающейся обмотки якоря с неподвижными клеммами машины осуществляется с п о мощью щеток, скользящих по коллектору.

Щетки вставляются в специальные обоймы щеткодержателя и прижимаются к коллектору спиральными или пластинчатыми пружинами. Щеткодержатели крепятся к траверсе, которую вместе со щетками можно поворачивать относительно статора на некоторый угол в ту или другую сторону. В качестве основы для изготовления щетки используют графит. Чтобы получить заданные свойства (определенную электропроводность, повышенную сопротивляемость к истиранию), в щетку добавляют порошки металлов (медь, свинец).

На рис. 5 .1. показан внешний вид машины постоянного тока серии П, выпускаемой отечественной промышленностью. Машины этой серии рассчитывают на различную мощность от 0,3 до 200 кВт. Двигатели серии П рассчитаны на напряжение 110 или 220 В, а генераторы - 115 или 230 В.

Рис. 5 .1. Внешний вид машины постоянного тока

Рис. 9.2. Поперечный разрез машины постоянного тока:

1 - сердечник якоря с проводниками обмотки; 2 - катушка обмотки возбуждения; 3 - вал; 4 - главный полюс; 5 - дополнительный полюс; 6 - статор

Поперечный разрез машины постоянного тока схематически изображен на рис. 5 .2, где видны статор, создающий магнитный поток возбуждения, и ротор, в пазах которого размещены проводники обмотки якоря. Между полюсным наконечником и якорем имеется воздушный зазор, исключающий трение ротора о статор (рис. 5 .3, а). Магнитная индукция в воздушном зазоре изменяется вдоль окружности по закону, который называют трапецеидальным (рис. 5 .3, б).

Устройство машины постоянного тока изображено на рис. 5 .4.

Машины постоянного тока обычно имеют принудительное воздушное охлаждение, осуществляемое вентилятором, насаженным на вал якоря. Для мощных машин выработаны системы.водородного, а также водяного охлаждения.

Рис. 5 .3. Схематическое изображение воздушного зазора 1 между полюсным наконечником 2 и якорем 3 (а) и магнитная индукция в воздушном зазоре (б)

Для защиты машины от пыли и влаги конструктивные окна, обеспечивающие доступ к коллектору и щеткам, закрывают съемными стальными лентами или пластинами.

Рис. 5 .4. Устройство машины постоянного тока:

1 - коллектор; 2 - щетки; 3 - сердечник якоря; 4 - сердечник главного полюса; 5 - полюсная катушка; 6 - статор; 7 - подшипниковый щит; 8 - вентилятор; 9 - обмотка якоря

Двигатель постоянного тока. Если подключить машину постоянного тока к электрической сети, через обмотку якоря потечет ток. В соответствии с законом Ампера на проводники обмотки якоря, находящиеся в магнитном поле возбуждения, действуют механические силы. Эти силы создают вращающий момент, под действием которого якорь начинает раскручиваться.

Вращающийся вал якоря используют для привода в действие различных механизмов: подъемных и транспортных средств, станков, швейных машин и т. д.

Исходя из закона сохранения энергии можно считать, что мощность, потребляемая двигателем из сети, тем больше, чем больше механическая нагрузка на его валу. Однако для понимания сущности работы электрического двигателя важно проследить, каким образом изменение механической нагрузки сказывается на электрической мощности, потребляемой двигателем.

Разберемся в этом. Обмотка якоря двигателя вращается в магнитном поле возбуждения. В этих условиях в соответствии с законом электромагнитной индукции в обмотке якоря возникает ЭДС. Применяя правило правой руки, нетрудно установить, что она направлена навстречу приложенному напряжению сети. Поэтому ее назвали противо -ЭДС. Именно противо -ЭДС является фактором, регулирующим потребление электрической мощности из сети.

По закону электромагнитной индукции, противо- ЭДС прямо пропорциональна скорости изменения магнитного потока, пронизывающего витки обмотки якоря. Следовательно, с уменьшением частоты вращения якоря уменьшается и противо -ЭДС.

Если механическая нагрузка на валу двигателя отсутствует (двигатель работает вхолостую), вращающему моменту двигателя препятствуют только моменты трения и частота вращения якоря достигает максимального значения. При этом противо-ЭДС почти полностью компенсирует напряжение сети и через обмотку якоря проходит минимальный ток. Соответственно электрическая мощность, потребляемая из сети, минимальна.

Регулирование частоты вращения двигателей

постоянного тока независимого и параллельного возбуждения

Обратимся еще раз к основному уравнению электродвигателя. Выражение для ЭДС двигателя ничем не отличается от выражения для ЭДС генератора. Это и понятно: и в том и в другом случае проводники обмотки пересекают силовые линии магнитного поля. Тот факт, что якорь генератора раскручивается механической, а якорь двигателя - электромагнитной силами, с точки зрения закона электромагнитной индукции не имеет значения.

С практической точки зрения важно представлять условия и способы регулирования частоты вращения двигателя. Выведенная формула позволяет решить эту задачу. Прежде всего отметим, что для уменьшения потерь мощности сопротивление обмотки якоря стремятся сделать по возможности малым (в реальных машиных оно составляет сотые или тысячные доли ом).

Таким образом, существует два способа плавного изменения частоты вращения двигателя в широких пределах: 1) изменение и напряжения U, подведенного к якорю двигателя;. 2) изменение магнитного потока возбуждения Ф (тока возбуждения Iв).

Второй способ регулирования частоты вращения двигателя предпочтительнее, так как он связан с меньшими потерями энергии: ток возбуждения в десятки раз меньше тока якоря, а потери в регулировочном реостате пропорциональны квадрату тока. Однако при необходимости изменения частоты вращения двигателя в очень широких пределах одновременно используют оба способа.

Возможность плавного и экономичного регулирования частоты вращения в широких пределах является важнейшим достоинством двигателей постоянного тока.

Во многих случаях возникает необходимость менять направление вращения якоря электродвигателя. Изменение направления вращения называют реверсированием.

Для реверсирования двигателя постоянного тока следует изменить направление магнитного потока возбуждения или тока якоря. При одновременном изменении направления потока возбуждения и тока якоря за счет изменения полярности напряжения источника питания направление вращения якоря двигателя не меняется.

Реверсирование двигателей осуществляют с помощью переключателей в цепи якоря или в цепи возбуждения.

Выражение для частоты вращения двигателя показывает, что по мере уменьшения магнитного потока возбуждения частота неограниченно возрастает. С этой точки зрения опасен обрыв цепи возбуждения двигателя, при котором магнитный поток резко уменьшается до потока остаточного намагничивания, а двигатель идет «вразнос». Особенно вероятен режим «разноса» у ненагруженного двигателя. Режим «разноса» является аварийным: центробежные силы деформируют обмотку якоря, якорь заклинивается, а в некоторых случаях и разрушается.

Страница 3 из 3

КОНСТРУКЦИЯ МАШИН ПОСТОЯННОГО ТОКА

На рис. 3 дан чертеж современной машины постоянного тока с продольным и поперечным разрезами. Статор состоит из станины 1 и прикрепленных к ней главных 2 и дополнительных 3 полюсов. Станину машин относительно небольшой мощности изготовляют из отрезков цельнотянутых стальных труб, а у мощных машин выполняют сварной из толстолистового стального проката. Для закрепления машины на фундаменте или исполнительном механизме к нижней части станины приваривают лапы 4, а для транспортировки в станину ввертывают рым-болты 5.

На сердечниках главных полюсов размещают обмотку возбуждения 6, которую изготовляют в виде катушек из медных изолированных проводников круглого или прямоугольного сечения. Катушки изолируют лентой и после пропитки и сушки насаживают на сердечник полюса и закреп-ляют стальными пружинящими рамками. Иногда для увеличения поверхности охлаждения катушку делят на две части. Полюс с надетой на него катушкой прикрепляют к станине болтами.

Дополнительные полюсы располагают между главными полюсами и вместе с катушками 14 их обмотки возбуждения также болтами прикрепляют к станине.

Якорь состоит из сердечника 7, обмотки 8 и коллектора 9.

Сердечник собирают из отдельных листов толщиной 0,5 мм, которые штампуют из электротехнической стали. В листах якоря вырубают пазы, в которые укладывают обмотку якоря. Укладка обмотки в пазы обеспечивает надежное ее закрепление на вращающемся якоре и умень-шает воздушный зазор между полюсом и якорем. Обмотку в пазу закрепляют клином из стеклотекстолита или бандажами, располагаемыми в кольцевых канавках сердечника якоря 13. Вне пазов, в лобовых частях, обмотку закрепляют бандажами 12 из проволоки или стеклоленты.

Собранный сердечник якоря спрессовывают между двумя нажимными шайбами и закрепляют на валу втулкой либо пружинным разрезным кольцом.

Станина, сердечники полюса и якоря являются участками магнитопровода, по которым замыкается магнитный поток, созданный обмотками возбуждения. Для уменьшения магнитного сопротивления по пути этого потока все указанные участки выполняют из стали. Для этой же цели воздушный зазор между якорем и полюсами стараются принимать меньшим. Обычно он составляет доли миллиметра у небольших машин и несколько миллиметров у более мощных.

При вращении якоря сталь его сердечника будет перемагничиваться, в ней будут индуктироваться переменные токи - вихревые, которые будут вызывать потери. Для снижения потерь от вихревых токов сердечник, как уже указывалось, собирается из отдельных изолированных друг от друга листов. Для изоляции листы после штамповки покрывают лаком. Из-за зубчатого строения якоря в зазоре будет происходить пульсация потока, в результате чего в полюсном наконечнике также будут наводиться вихревые токи, для уменьшения которых наконечник и весь полюс собирают из отдельных листов.

По коллектору скользят неподвижные щетки, которые размещаются в щеткодержателях. Щеткодержатели закрепляют на цилиндрических или призматических пальцах 10, которые в свою очередь закрепляют на траверсе 11. Пальцы выполняют из гетинакса либо из стали, опрессо-ванной пластмассой в месте сочленения его с траверсой. Обычно число пальцев выбирают равным числу полюсов.

Якорь вращается в подшипниках 15, которые размещены в торцевых щитах, называемых подшипниковыми щитами 16.

Некоторые конструктивные элементы машины рассмотрим подробнее.

Главные полюсы (рис. 4) собирают из штампованных листов электротехнической стали толщиной 1 мм. Листы спрессовывают в пакет и скрепляют стальными заклепками, число которых принимают не менее четырех. Крайние листы полюса выполняют из более толстой стали (4 - 10 мм) во избежание распушения листов.


Для того чтобы получить необходимый характер распределения магнитного поля в воздушном зазоре, полюс заканчивают полюсным наконечником определенной формы.

Воздушный зазор между полюсами и якорем или выполняют одинаковым по всей ширине полюсного наконечника, или под краями наконечника вследствие его скоса делают больше. Иногда делают эксцентричный воздушный зазор, при котором центры радиусов якоря и наконечника полюса не совпадают. Зазор при этом постепенно увели-чивается от середины полюса к его краю (рис. 5).

В полюсе имеется отверстие с резьбой, в которое вворачивается болт, с помощью которого полюс прикрепляют к станине. Для более надежного крепления полюса у крупных машин и машин, работающих в условиях тряски, болты вворачивают в специальный стержень, вставленный в полюс (см. рис.4).
Сердечник якоря может состоять из одного или нескольких пакетов. При длине сердечника менее 25 см он выполнен из одного пакета (рис. 6) и при большей длине - из нескольких (рис. 7). Между пакетами с помощью специальных распорок создают вентиляционные каналы, предназначенные для лучшего охлаждения якоря.


Форму пазов, вырубаемых в сердечнике якоря, выбирают овальной полузакрытой для машин небольшой мощности и прямоугольной открытой для машин средней и большой мощности (рис. 8). Между стенками паза и проводниками обмотки укладывают изоляцию (пазовая изоляция). На рис. 8 показано крепление обмотки в пазу с помощью клина.

Коллектор состоит из большого числа электрически изолированных друг от друга пластин, которые штампуют из профильной меди (рис. 9). Изоляцию осуществляют тонкими прокладками, вырубленными из миканита (прессованная слюда), которые закладывают между медными пластинами. Прокладки имеют форму пластин. Набор коллекторных пластин с прокладками должен быть прочно закреплен и должен иметь строго цилиндрическую форму.
По способу крепления пластин существует большое многообразие конструкций коллекторов, две из которых показаны на рис. 10. На рис. 10, а коллекторные пластины зажимаются между корпусом и нажимным фланцем. Корпус и нажимной фланец выполняют из стали, а для изоляции на них надевают миканитовые манжеты. На рис. 10,б показано крепление пластин с помощью пластмассы. В настоящее время для машин небольшой и средней мощности наибольшее применение находят коллекторы с пластмассовым корпусом.

Собранный коллектор насаживают на вал и закрепляют от проворачивания шпонкой. К каждой коллекторной пластине подсоединяют проводники от секций, из которых состоит обмотка якоря. Для подсоединения проводников у коллекторных пластин со стороны, обращенной к якорю, выполняют выступы, называемые петушками, в которых фрезеруют шлицы. В эти шлицы закладывают и затем запаивают проводники обмоток.

На рисунке 1 изображен полюс машины. Сердечники полюсов набираются из листов, выштампованных из электротехнической толщиной 0,5 - 1 мм, а иногда также из листов конструкционной стали толщиной до 2 мм. Так как полюсов в стационарных режимах не изменяется, то листы друг от друга обычно не изолируются. Сердечник полюса стягивается шпильками, концы которых расклепываются. Нижняя, уширенная, часть сердечника называется или . Расположенная на полюсе обмотка часто разбивается на 2 - 4 катушки для лучшего ее охлаждения.

Рисунок 1. Главный полюс машины постоянного тока

Число главных полюсов всегда четное, причем северные и южные плюсы чередуются, что достигается соответствующим соединением катушек возбуждения отдельных полюсов. Катушки всех полюсов соединяются обычно последовательно. Мощность, затрачиваемая на возбуждение, составляет около 0,5 - 3% от номинальной мощности машины. Первая цифра относится к машинам мощностью в тысячи киловатт, а вторая - к машинам мощностью около 5 кВт.

Для улучшения условий токосъема с коллектора в машинах мощностью более 0,5 кВт между главными полюсами устанавливаются также дополнительные полюсы, которые меньше главных по своим размерам. Сердечники дополнительных полюсов обычно изготавливаются из конструкционной стали.

Как главные, так и дополнительные полюсы крепятся к ярму с помощью болтов. Ярмо в современных машинах обычно выполняется из стали (из стальных труб в машинах малой мощности, из стального листового проката, а также из стального литья). Чугун вследствие относительно малой магнитной проницаемости не применяется.

В машинах постоянного тока массивное ярмо является одновременно также станиной, т. е. той частью, к которой крепятся другие неподвижные части машины и с помощью которой машина обычно крепится к фундаменту или другому основанию.

Конструкция якоря


Рисунок 2. Диск (а ) и сегмент (б ) стали якоря

Сердечник якоря набирается из штампованных дисков (рисунок 2, а ) электротехнической стали толщиной 0,5 мм. Диски насаживаются либо непосредственно на вал (при D а ≤ 75 см), либо набираются на якорную втулку (D а ≥ 40 см), которая надевается на вал. Сердечники якоря диаметром 100 см и выше составляют из штампованных сегментов (рисунок 2, б) электротехнической стали. Сегменты набираются на корпус якоря, который изготовляется обычно из листового стального проката и с помощью втулки соединяется с валом. Для крепления к корпусу якоря сегменты отштамповываются с гнездами для ласточкиных хвостов либо с выступающими ласточкиными хвостами (рисунок 3).


Рисунок 3. Крепление сегментов стали якоря с помощью ласточкиных хвостов

1 - вентиляционные распорки; 2 - лист стали якоря; 3 - стяжной болт; 4 - ребро ступицы якоря; 5 - лист ступицы якоря

В в зависимости от выбранной системы вентиляции могут быть аксиальные или радиальные каналы. Аксиальные каналы образуются выштампованными в дисках сердечника отверстиями. Радиальные каналы создаются с помощью вентиляционных распорок или ветрениц, посредством которых сердечник якоря (рисунок 4) подразделяется на отдельные пакеты 1 шириной 40 - 70 мм и каналы 2 между ними шириной около 5 - 10 мм. Ветреницы приклепываются или привариваются к крайним листам пакетов. Сердечник якоря крепится с помощью нажимных плит или фланцев 6 .


Рисунок 4. Сердечник якоря с обмоткой

В пазы на внешней поверхности якоря укладываются катушки обмотки якоря. Выступающие с каждой стороны из сердечника якоря (рисунок 4) лобовые части обмотки 3 имеют вид цилиндрического кольца и своими внутренними поверхностями опираются на обмоткодержатели 5 , а по внешней поверхности крепятся проволочными бандажами 7 . Обмотка соединяется с коллектором 4 .

Воздушный зазор между полюсами и якорем в малых машинах менее 1 мм, а в крупных - до 1 см.

Конструкция коллектора

Рисунок 5. Коллектор

Устройство коллектора машины небольшой мощности показано на рисунке 5. Он состоит из пластин 1 толщиной 3 - 15 мм, изолированных друг от друга миканитовыми прокладками толщиной около 1 мм. Пластины имеют трапецеидальное сечение и вместе с прокладками составляют кольцо, которое скрепляется с помощью нажимных фланцев 4 , стянутых стяжными болтами 7 . От нажимных фланцев пластины коллектора изолируются миканитовыми коллекторными манжетами 2 . Собранный коллектор крепится на валу 6 с помощью шпонки 5 . К каждой пластине коллектора присоединяются соединительные проводники - "петушки" 3 - от обмотки якоря.

Подобное в принципе устройство имеют коллекторы подавляющего большинства машин. В последнее время в малых машинах коллекторные пластины с миканитовыми прокладками часто запрессовывают на пластмассу.

Конструкция щеточного аппарата

Для отвода тока от вращающегося коллектора и подвода к нему тока применяется щеточный аппарат, который состоит из щеток, щеткодержателей, щеточной траверсы и токособирающих шин.

Одна из типичных конструкций щеткодержателя показана на рисунке 5. Щеткодержатели укрепляются на щеточных пальцах. На каждом щеточном пальце обычно помещают несколько или целый ряд щеткодержателей со щетками, которые работают параллельно. Щеточные пальцы, число которых обычно равно числу главных полюсов, крепятся к щеточной траверсе (рисунок 7)


и электрически изолируются от нее. Траверса крепится к неподвижной части машины: в машинах малой и средней мощности - к втулке подшипникового щита, а в крупных машинах - к станине. Обычно предусматривается возможность поворота траверсы для установки щеток в правильное положение. Полярности щеточных пальцев чередуются, и все пальцы одной полярности соединяются между собой сборными шинами. Шины с помощью отводов соединяются с выводными зажимами или с другими обмотками машины.

Коллектор и щеточный аппарат являются весьма ответственными узлами машины, от конструкции и качества изготовления которых в большой степени зависит бесперебойная работа машины и надежность электрического контакта между коллектором и щетками.

Общий вид машины постоянного тока

На рисунке 8 приведен чертеж, а на рисунке 9 - фотография машины постоянного тока в разобранном виде.


Рисунок 8. Общий вид электродвигателя постоянного тока 14 кВт, 220В, 1500 об/мин
1 - люковая крышка; 2 - коллекторная пластина; 3 - крепление коллектора пластмассой; 4 - кольцо для размещения корректирующих масс; 5 - траверса; 6 - передний подшипниковый щит; 7 - вал; 8 - обмоткодержатель; 9 - бандаж лобовых частей якоря; 10 - катушка добавочного полюса; 11 - сердечник добавочного полюса; 12 - станина; 13 - рым; 14 - сердечник якоря; 15 - сердечник главного полюса; 16 - катушка главного полюса; 17 - вентилятор; 18 - задний подшипниковый щит; 19 - задняя крышка подшипника; 20 - шариковый подшипник; 21 - передняя крышка подшипника; 22 - свободный конец вала; 23 - паз якоря; 24 - соединительные провода (выводы) от обмоток к доске выводов; 25 - коробка выводов

Видео 1. Устройство машины постоянного тока


Рисунок 9. Электродвигатель постоянного тока типа П52, 8 кВт, 220 В, 43 А, 1500 об/мин

Одноякорные машины постоянного тока строятся мощностью до 10 МВт и напряжением преимущественно до 1000 В. Для электрифицированных железных дорог выпускаются также машины напряжением до 1500 В. На напряжения свыше 1500 В машины постоянного тока изготавливаются редко, так как с увеличением напряжения условия токосъема с коллектора ухудшаются.

В отдельных случаях (мощные ледоколы, приводы аэродинамических труб и пр.) требуются двигатели постоянного тока мощностью 15 - 30 МВт. В машинах с одним якорем получение таких мощностей не возможно, и поэтому строятся двух-, трех- и четырехъякорные машины, которые представляют собой многомашинные агрегаты с общим валом.