Как соорудить лопасти для ветрогенератора своими руками: примеры самостоятельного изготовления лопастей для ветряка. Способ уменьшения нагрузок и вибраций на летательных аппаратах, имеющих многолопастные воздушные винты с четным числом лопастей Расположен

Л опасти для вертолета как резина для автомобиля. Мягкие лопасти сглаживают реакции вертолета, делают его более ленивым. Жесткие, напротив, заставляют вертолет реагировать на управление без задержек. Тяжелые лопасти замедляют реакции, легкие обостряют. Лопасти с высоким профилем отбирают больше энергии, а с низким склонны к срыву потока, когда подъемная сила резко снижается. Выбирая лопасти, стоит учесть их параметры и выбрать те, что подойдут вашему стилю и опыту больше всего.

Когда мы выбираем лопасти, то в первую очередь смотрим на их длину, поскольку длина лопасти зависит от класса вертолета. Чаще под длиной подразумевается расстояние от крепежного отверстия лопасти до ее концевой части. Некоторые немногочисленные производители указывают полную длину лопасти от комля до концевой части. К счастью таких случаев мало.
От длины зависит подъемная сила, и сопротивление вращения которые создает лопасть. Длинная лопасть способна создать большую подъемную силу, но при этом отнимает больше энергии на вращение. С длинными лопастями модель стабильнее при висении и обладает большей "летучестью", т.е. способна на более крупные маневры и лучше выполняет авторотацию.

Хорда (ширина лопасти)

Важный параметр лопасти, который чаще всего не указывают вовсе, и остается только измерить хорду самостоятельно. Чем шире лопасть, тем больше подъемную силу она может создать при тех же углах атаки и тем резче вертолет при управлении по циклическому шагу. Широкая лопасть имеет более высокое сопротивление вращения и потому сильнее нагружает силовую установку. При использовании лопастей с широкой хордой важна точная работа шагом, иначе можно легко "задушить" мотор. Наибольший разброс ширины встречается у лопастей для вертолетов 50-ого класса и выше.


Длина и хорда.

Материал

Следующее, на что нужно обратить внимание, это материал, из которго сделаны лопасти. Сегодня наиболее распространенные материалы, из которых изготавливают лопасти вертолетов это карбон и стеклопластик. Деревянные лопасти постепенно сходят со сцены, так как не обладают достаточной прочностью и сильно ограничивают вертолет в летных возможностях. К тому же деревянные лопасти склонны к изменению формы, что приводит к постоянному появлению «бабочки». Пожалуй, наименьшее, на что сегодня стоит соглашаться, это стеклопластиковые лопасти. Они не страдают изменением формы, обладают достаточной жесткостью для выполнения легкого 3D и отлично подойдут начинающим вертолетчикам. Пилоты со стажем непременно выберут карбоновые лопасти как наиболее жесткие, позволяющие вертолету выполнять экстремальные фигуры высшего пилотажа и наделяют вертолет молниеносной реакцией на управление.

Важный параметр - вес лопасти. При прочих равных более тяжелая лопасть сделает вертолет более стабильным, снизит скорость управления по циклическому шагу. Тяжелая лопасть добавит стабильности и размеренности и запасет больше энергии при выполнении авторотации, что сделает маневр более комфортным. Если вы стремитесь к 3D полетам, выбирайте более легкие лопасти.

Форма лопасти

Прямая, трапециевидная. Чаще встречается прямая форма, трапециевидная скорее относится к экзотике. Последняя позволяет снизить сопротивление вращения ценой снижения отдачи.


Форма лопасти.

Симметричный - высота профиля одинаковая сверху и снизу лопасти. Лопасти с симметричным профилем способны создавать подъемную силу только при ненулевом шаге. Такие лопасти наиболее распространены среди современных вертолетов и используются на всех моделях, выполняющих 3D пилотаж.
Полусимметричный – снизу лопасти профиль имеет меньшую высоту. Такие лопасти способны создавать подъемную силу даже при нулевых углах атаки, т.е. Создают подъемную силу аналогично тому, как это делает крыло самолета. Такие лопасти используются редко, как правило, только на больших копийных вертолетах.

Высота профиля

Чем выше профиль, тем лучше он сопротивляется срыву потока, но тем выше его сопротивление. Деревянные лопасти обычно имеют более высокий профиль, но лишь для того, что бы обладать достаточной прочностью.


Форма профиля и его высота.

Толщина комля

Толщина комля напрямую связана с размером цапф вашего вертолета. Если комель толще, то лопасть не влезет в цапфу, если наоборот – будет болтаться. Обычно в пределах одного класса вертолетов толщина комля стандартна, тем не менее, при покупке лопастей убедитесь, что они подходят к вашему вертолету. Некоторые производители комплектуют лопасти шайбами-проставками, которые можно использовать, если посадочное место цапфы больше толщины комля. Такие шайбы надо устанавливать парами сверху и снизу комля, что бы лопасть была закреплена по центру цапфы.


Толщина комля.

Диаметр крепежного отверстия

Диаметр отверстия должен совпадать с диаметром крепежного винта цапфы. Как и толщина комля, этот параметр стандартный, тем не менее, стоит его проверить перед покупкой лопастей.

Положение крепежного отверстия относительно наступающей кромки.

Определяет то, насколько наступающая кромка лопасти выступает вперед цапфы. Смещенное назад отверстие приводит к тому, что при вращении лопасть отстает от цапфы, что делает такие лопасти более стабильными. Напротив, смещение отверстия к наступающей кромке заставляет лопасть при вращении выдвигаться вперед цапфы, и такое положение делает лопасть менее стабильной.


Положение крепежного отверстия.

Форма концевой части лопасти.

Форма концевой части влияет на сопротивление вращения ротора. Различают прямую, закругленную и скошенную форму. Более прямая форма создает подъемную силу по всей длине лопасть, но и имеет наибольшее сопротивление вращения.


Форма концевой части лопасти.

Продольный центр тяжести.

Положение центра тяжести в продольном направлении. Чем ближе центр тяжести к концевой части лопасти, тем лопасть более стабильна и лучше выполняет авторотацию. Наоборот, смещение центра тяжести к комлю делает лопасть более маневренной, но страдает накопление лопастью энергии при авторотации.

Поперечный центр тяжести.

Положение центра тяжесть поперек лопасти, от наступающей кромки к отступающей. Обычно стараются размещать центр тяжести так, чтобы при вращении лопасть не отставала от цапфы и не выступала вперед. Лопасть с сильно смещенным назад центром тяжести выступает при вращении вперед цапфы и, следовательно, более динамична.


Продольный и поперечный центр тяжести.

Динамическая балансировка: выступающая/отступающая лопасть.

Параметр зависит от положения крепежного отверстия, веса, положения поперечного и продольного центров тяжести. В целом, если лопасть при вращении выступает вперед цапфы, то такая лопасть более маневренная и больше подходит для 3D полетов, но отбирает больше энергии и делает вертолет недостаточно стабильным. Если напротив лопасть при вращении отстает от цапфы, то такая лопасть более стабильная. Если лопасть не отстает и не выступает, то это нейтральная лопасть. Такая лопасть наиболее универсальная и одинаково хорошо подходит как для маневров висения, так и для 3D полетов.


Динамическая балансировка.

Ночные лопасти.

Ночные лопасти со встроенными светодиодами и встроенным, либо съемным аккумулятором служат для комплектации вертолета для ночных полетов. Совместно с лопастями используются различные способы подсветки корпуса вертолета.

Лопасти с защитным стержнем.

Стержень не дает лопасти разлетаться на отдельные части в случае падения. Очень полезный элемент безопасности, который к сожалению присутствует только в дорогих лопастях известных производителей. Случается, что обломки лопастей, не оборудованных таким стержнем, разлетаются на расстояние до 10 метров от места падения и могут привести к травме.

, ветрогенераторы , мельницы , гидро- и пневмоприводы).

В нагнетательных машинах лопасти или лопатки перемещают поток. В приводных - поток жидкости или газа приводит в движение лопасти или лопатки.

Принцип действия

В зависимости от величины перепада давления на валу может находиться несколько ступеней давления.

Основные типы лопаток

Лопаточные машины, в качестве наиболее важного элемента содержат находящиеся на валу диски, оснащенные профилированными лопатками. Диски, в зависимости от типа и назначения машины, могут вращаться с абсолютно разными скоростями , составляющими от единиц оборотов в минуту у ветрогенераторов и мельниц, до десятков и сотен тысяч оборотов в минуту у газотурбинных двигателей и турбонагнетателей.

Лопатки современных лопаточных машин, в зависимости от назначения, выполняемой данным устройством задачи и среды, в которой они работают, имеют самую различную конструкцию. Эволюция этих конструкций прослеживается при сравнении лопаток средневековых мельниц - водяной и ветряной, с лопатками ветродвигателя и гидротурбины ГЭС .

На конструкцию лопаток влияют такие параметры, как плотность и вязкость среды, в которой они работают. Жидкость гораздо плотнее газа, более вязкая и практически несжимаема. Поэтому форма и размеры лопаток гидравлических и пневматических машин сильно отличается. Из-за разности объёмов при одинаковом давлении, площадь поверхности лопаток пневматических машин может быть в несколько раз больше лопаток гидравлических.

Различают рабочие, спрямляющие и поворотные лопатки. Кроме того, в компрессорах могут быть направляющие лопатки, а также входные направляющие лопатки, а в турбинах - сопловые лопатки и охлаждаемые.

Конструкция лопатки

Для каждой лопатки характерен собственный аэродинамический профиль. Обычно он напоминает крыло летательного аппарата . Самое существенное отличие лопатки от крыла состоит в том, что лопатки работают в потоке, параметры которого очень сильно изменяются по её длине.

Профильная часть лопатки

По конструкции профильной части лопатки подразделяются на лопатки постоянного и переменного сечений . Лопатки постоянного сечения применяются для ступеней, в которых длина лопатки не более одной десятой среднего диаметра ступени. В турбинах большой мощности это, как правило, лопатки первых ступеней высокого давления. Высота этих лопаток невелика и составляет 20–100 мм.

Лопатки переменного сечения имеют переменный профиль на последующих ступенях, причём площадь поперечных сечений плавно уменьшается от корневого сечения к вершине. У лопаток последних ступеней это соотношение может достигать 6–8. Лопатки переменного сечения всегда имеют начальную закрутку, то есть углы, образованные прямой, соединяющей кромки сечения (хордой), с осью турбины, называемыми углами установки сечений. Эти углы, из соображений аэродинамики, по высоте задаются различными, с плавным увеличением от корня к вершине.

Для относительно коротких лопаток углы закрутки профиля (разность между углами установки периферийного и корневого сечений) составляют 10–30, а для лопаток последних ступеней могут достигать 65–70.

Взаимное расположение сечений по высоте лопатки при образовании профиля и положение этого профиля относительно диска представляет собой установку лопатки на диске и должно удовлетворять требованиям аэродинамики, прочности и технологичности изготовления.

Лопатки в основном изготавливаются из предварительно отштампованных заготовок . Также применяются методы изготовления лопаток точным литьём или точной штамповкой . Современные тенденции повышения мощности турбин требуют увеличения длины лопаток последних ступеней. Создание таких лопаток зависит от уровня научных достижений в области аэродинамики потока, статической и динамической прочности и наличия материалов с необходимыми свойствами.

Современные титановые сплавы позволяют изготовить лопатки длиной до 1500 мм . Но в этом случае ограничением является прочность ротора, диаметр которого приходится повышать, но тогда необходимо уменьшать длину лопатки для сохранения соотношения из соображений аэродинамики, иначе увеличение длины лопатки неэффективно. Поэтому существует ограничение длины лопатки, больше которой она не может эффективно работать.

  1. Гребешки лабиринтного уплотнения радиального зазора
  2. Бандажная полка
  3. Гребешки торцевого лабиринтного уплотнения
  4. Отверстие для подвода охлаждающего воздуха во внутренние каналы охлаждаемой лопатки

Хвостовая часть лопатки

Конструкции хвостовых соединений и, соответственно, хвостовиков лопатки весьма разнообразны и применяются исходя из условий обеспечения необходимой прочности с учётом освоения технологий их изготовления на предприятии, изготавливающем турбины. Виды хвостовиков: Т-образные, грибовидные, вильчатые, ёлочные и др.

Ни один вид хвостовых соединений не имеет особого преимущества над другим - у каждого есть свои преимущества и недостатки. Разными заводами изготавливаются разные типы хвостовых соединений, и каждый из них использует свои технологии изготовления.

Основные типы хвостовиков лопаток: 1. Т-образный хвостовик; 2. Грибовидный хвостовик; 3. Вильчатый хвостовик; 4. Ёлочный хвостовик

Связи

Рабочие лопатки турбин соединяются в пакеты связями различной конструкции: бандажами, приклёпанными к лопаткам или выполненными в виде полок (цельнофрезерованный бандаж); проволоками, припаянными к лопаткам или свободно вставленными в отверстия в профильной части лопаток, и прижимающимися к ним центробежными силами; с помощью специальных выступов, свариваемых друг с другом после наборки лопаток на диск.

Элементы сборки лопаток: 1.Перо лопатки; 2. Полка; 3. Хвостовик; 4. Бандажная трубка

Лопатки паровых турбин

Разница размеров и формы лопаток на разных ступенях давления одной турбины

Назначение лопаток турбин - превращение потенциальной энергии сжатого пара в механическую работу . В зависимости от условий работы в турбине длина её рабочих лопаток может колебаться от нескольких десятков до полутора тысяч миллиметров. На роторе лопатки расположены ступенчато, с постепенным увеличением длины, и изменением формы поверхности. На каждой ступени лопатки одинаковой длины расположены радиально оси ротора. Это обусловлено зависимостью от таких параметров, как расход, объём и давление.

При равномерном расходе давление на входе в турбину максимальное, расход минимален. При прохождении рабочим телом через лопатки турбины совершается механическая работа, давление уменьшается, но увеличивается объём. Следовательно, увеличивается площадь поверхностей рабочей лопатки и, соответственно, её размер. Например, длина лопатки первой ступени паровой турбины мощностью 300 МВт составляет 97 мм, последней - 960 мм.

Лопатки компрессоров

Назначение лопаток компрессоров - изменение начальных параметров газа и превращение кинетической энергии вращающегося ротора в потенциальную энергию сжатого газа. Форма, размеры и способы закрепления на роторе лопаток компрессоров не особо отличаются от лопаток турбин. В компрессоре при одинаковом расходе газ сжимается, его объём уменьшается, а давление возрастает, поэтому на первой ступени компрессора длина лопаток больше, чем на последней.

Лопатки газотурбинных двигателей

В газотурбинном двигателе есть и компрессорные, и турбинные лопатки. Принцип действия такого двигателя - сжатие воздуха, необходимого для горения, с помощью лопаток турбокомпрессора, направления этого воздуха в камеру сгорания и, при воспламенении с топливом - механическая работа продуктов сгорания на лопатках турбины, расположенной на одном валу с компрессором. Этим газотурбинный двигатель отличается от любой другой машины, где имеются либо компрессорные нагнетающие лопатки, как в нагнетателях и воздуходувках всякого рода, либо турбинные лопатки, как у паротурбинных силовых установок или на гидроэлектростанциях.

Лопатки (лопасти) гидротурбин

Диск с лопатками гидротурбины

Лопасти ветротурбины

По сравнению с лопатками паровых и газовых турбин лопатки гидротурбин работают в среде с малыми скоростями, но высокими давлениями. Здесь длина лопатки невелика относительно её ширины, а иногда ширина больше длины в зависимости от плотности и удельного объёма жидкости. Часто лопатки гидротурбин бывают приварены к диску или могут изготавливаться целиком с ним.

Приходится , опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка - устройство лопастей.

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются , напоминающие своими формами самолет с пропеллером. Винт - это крыльчатка ветряка, хвост - устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает . Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка - крыльчатка . Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием - чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Выбор вида

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки - создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Расчет лопастей

На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.

Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:

Как вариант, можно использовать онлайн-калькулятор , позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.

Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.

Материал для изготовления

Прежде, чем начать работы по созданию крыльчатки , надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:

  • прочность
  • малый вес
  • легкость обработки
  • возможность придания нужной формы или наличие ее у заготовки
  • доступность

Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.

Трубы ПВХ

Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.

Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.

Алюминий

Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий . При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.

Затрудняет работу и форма материала - чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.

Стекловолокно

Такой выбор - для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:

  • изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
  • изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
  • подобным образом изготавливается вторая половина лопасти
  • после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице

Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.

Древесина

Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей - задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.

Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.

Древесина обладает массой отрицательных качеств - она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.

Создание лопастей поэтапно

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм - ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине - 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

ГОСТ Р 52692-2006
(ИСО 484-1:1981)

Группа Д44


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Судостроение

СУДОВЫЕ ГРЕБНЫЕ ВИНТЫ

Допуски на изготовление

Часть 1

Гребные винты диаметром более 2,5 м

Shipbuilding. Ship screw propellers. Manufacturing tolerances.
Part 1. Propellers of diameter greater than 2,5 m


ОКС 47.020.20
ОКП 64 4700

Дата введения 2007-07-01

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Научно-исследовательским институтом по стандартизации и сертификации "Лот" ФГУП "ЦНИИ им. акад. А.Н.Крылова" на основе аутентичного перевода международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 5 "Судостроение"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2006 г. N 354-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 484-1:1981 "Судостроение. Судовые гребные винты. Допуски на изготовление. Часть 1. Гребные винты диаметром более 2,5 м" (ISO 484-1:1981 "Shipbuilding - Ship screw propellers - Manufacturing tolerances - Part 1: Propellers of diameter greater than 2,5 m") путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет


ВНЕСЕНА поправка, опубликованная в ИУС N 11, 2007 год

Поправка внесена изготовителем базы данных

Введение

Введение

В настоящем стандарте вместо ссылки на международный стандарт ИСО 3715, замененный на два стандарта: ИСО 3715-1 "Суда и судовые технологии. Пропульсивные установки судов. Часть 1. Термины и определения геометрии гребных винтов" и ИСО 3715-2 "Суда и судовые технологии. Часть 2. Словарь для пропульсивных установок с гребными винтами регулируемого шага", которые в настоящее время не приняты в Российской Федерации, приведена ссылка на ГОСТ 25815 , распространяющийся на термины и определения судовых гребных винтов и соответствующий конкретным потребностям судостроения Российской Федерации.

Ссылка на рекомендацию ИСО/Р 468 в настоящий стандарт не включена, т.к. данная рекомендация была заменена на ИСО 468:1982 "Шероховатость поверхности. Параметры, их значения и общие правила установления технических требований", который отменен без замены в 1998 г.

Текст измененных по отношению к международному стандарту ИСО 484-1 отдельных структурных элементов в настоящем стандарте выделен курсивом.

1 Назначение

Настоящий стандарт устанавливает допуски на изготовление судовых гребных винтов диаметром более 2,5 м.

Примечание - В некоторых случаях возможны отклонения допусков по желанию заказчика или взаимному соглашению проектанта и заказчика. Приспособления и методы измерений выбирает изготовитель гребных винтов при условии, что допуски им будут выдержаны с требуемой точностью.

2 Область применения

Стандарт распространяется на цельнолитые гребные винты, гребные винты со съемными лопастями и гребные винты регулируемого шага.

3 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ 25815-83 Винты гребные. Термины и определения (ИСО 3715-1:2002 "Суда и судовые технологии. Пропульсивные установки судов. Часть 1. Термины и определения геометрии гребных винтов", NEQ; ИСО 3715-2:2001 "Суда и судовые технологии. Часть 2. Словарь для пропульсивных установок с гребными винтами регулируемого шага", NEQ)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочного стандарта в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

4 Методы измерения шага

4.1 Принцип одного из методов измерения состоит в нанесении на дуге радиуса отрезка PQ , соответствующего углу , и в измерении разности высот точек Р и Q относительно плоскости, перпендикулярной к оси гребного винта (см. рисунок 1).

Рисунок 1

Отрезок PQ должен быть спроектирован одним из методов, описанных в 4.1.1 или 4.1.2*.
________________
* При необходимости могут быть применены другие методы, обеспечивающие требуемую точность.

4.1.1 Применение рейсмусов

Отрезок PQ проектируют при помощи рейсмусов.

4.1.2 Метод градуированных дисков

Длина отрезка PQ является характеристикой угла на части градуированного диска соответствующего радиуса (см. рисунок 1).

5 Метод измерения толщины сечения

5.1 Толщина цилиндрического сечения в точке S должна быть измерена по направлению SV (см. рисунок 2), расположенному в тангенциальной плоскости коаксиального цилиндра перпендикулярно к линии шага нагнетательной стороны сечения, и по направлению SU перпендикулярно к поверхности нагнетательной стороны или по направлению ST параллельно оси гребного винта при условии, если она определена таким способом на чертеже.

Рисунок 2

5.2 Максимальная толщина для каждого радиуса должна быть определена при помощи пары кронциркулей или профиля, полученного построением, в различных точках: S , S , S , S и т.д.

5.3 Для проверки входящей и выходящей кромок применяют кромочные шаблоны. Длина кромочных шаблонов должна составлять, по крайней мере, 15% длины сечения, но не менее 125 мм.

Входящая и выходящая кромки должны быть проверены кромочными шаблонами для гребных винтов классов S и I (см. таблицу 1). Для гребных винтов других классов проверку проводят по просьбе заказчика.


Таблица 1

Класс гребного винта

Наименование класса гребного винта

Особый

Высший

Средний

Обычный

6 Классы гребных винтов

Класс точности устанавливает заказчик в соответствии с таблицей 1.

7 Допуски на шаг

Допуски на шаг приведены в таблице 2.


Таблица 2

Наименование параметра

Класс гребного винта

, %

Местный шаг

Шаг сечения

Шаг лопасти

Шаг винта

Примечание - Предельные отклонения выражены в процентах конструктивного шага соответствующего радиуса для местного шага и шага сечения и среднего конструктивного шага для шага лопасти и шага винта

7.1 Шаг должен быть измерен, по крайней мере, на радиусах, указанных в таблице 3.


Таблица 3

Класс гребного винта

Радиусы

Сечение около галтели ступицы: ; ; ; ; ; ;

Сечение около галтели ступицы: ; ; ; ;

Сечение около галтели ступицы: ; ;


По соглашению между заинтересованными сторонами могут быть проведены измерения на других радиусах.

7.2 Измерение местных шагов для винтов классов S и I проводят в соответствии с разделом 10.

7.3 Допуски на местный шаг и шаг сечения, приведенные в таблице 2, увеличивают на 50% для сечений на или менее.

7.4 Изготовитель гребных винтов может компенсировать погрешность на шаг, допуск на который приведен в таблице 2, изменением диаметра гребного винта только с согласия заказчика.

7.5 Конструктивным шагом является шаг базовой линии.

Линия конструктивного шага сечения представляет собой винтовую базовую линию для рассматриваемого сечения, для которой даны ординаты сечения нагнетательной и засасывающей сторон.

Это может быть линия, соединяющая носик и хвостик сечения, а может быть и любая другая соответственно расположенная винтовая линия.

7.6 Местный шаг в точке В (см. рисунок 1) определяют измерением разности высот между точками Р и Q , расположенными на равных расстояниях от точки В , по обе стороны от нее (ВР=BQ ), и умножением разности высот на . Результат следует сравнить с местным шагом, измеренным по профилям нагнетательной стороны для тех же точек.

Расстояние между двумя любыми точками при измерении местного шага может быть от 100 до 400 мм. Одно измерение шага следует проводить вблизи входящей кромки, другое - вблизи выходящей кромки и, по крайней мере, еще два измерения шага между ними. По мере возможности измерения должны быть последовательными.

7.7 Шаг сечения и шаг лопасти определяют для каждого радиуса умножением разности высот между измеряемыми крайними точками на .

7.8 Шаг лопасти определяют как среднеарифметическое значение шагов сечений для рассматриваемой лопасти.

7.9 Шаг гребного винта определяют как среднеарифметическое значение средних шагов лопасти.

8 Допуски на радиус гребного винта

8.1 Допуски на радиус гребного винта приведены в таблице 4.


Таблица 4

Наименование параметра

Класс гребного винта

Радиус гребного винта

8.2 Для гребного винта в направляющей насадке эти допуски могут быть уменьшены.

9 Допуски на толщину сечения лопасти

9.1 Измерения толщины следует проводить на тех же радиусах, что и измерения шага.

9.2 Предельные отклонения, указанные в таблице 5, выражены в процентах местной толщины.


Таблица 5

Наименование параметра

Класс гребного винта

Предельные отклонения (допуск)

мм,
не менее

мм,
не менее

мм,
не менее

мм,
не менее

Толщина сечения лопасти

9.3 Максимальные значения толщин, указанные на чертеже, после вычитания отрицательного допуска должны быть не менее значений толщин, требуемых классификационными обществами.

10 Допуски на плавность сечений лопасти

Допуски на плавность сечений лопастей применяют только для гребных винтов классов S и I на радиусах, на которых измеряются шаги.

Чтобы добиться плавности сечений, отклонения в результате последовательных измерений местного шага и толщины не должны отличаться одно от другого более чем на половину допуска (например, если допуск от плюс 2,0% до минус 2,0%, то допускаемая разность последовательных отклонений составляет 2,0%).

Для избежания чрезмерных отклонений в общей кривизне сечения необходимо, чтобы алгебраическая сумма отклонений, выраженная в процентах, двух каких-либо последовательных измерений местного шага превышала не более чем в 1,5 раза предусмотренный допуск. Например, если допуск ±2,0%, то сумма последовательных отклонений должна быть ±3,0% (см. рисунок 3).

Примечания

1 На рисунке отклонения увеличены в 20 раз.

2 Очень высокие значения подчеркнуты.

Рисунок 3 - Гребной винт класса I

Плавность цилиндрических сечений также проверяют, применяя специальные гибкие шаблоны.

Входящие и выходящие кромки следует проверять кромочными шаблонами, позволяющими установить соответствие кромок чертежу с учетом следующих допусков нагнетательной и засасывающей сторон:

±0,5 мм - для класса S;

±0,75 мм - для класса I.

По соглашению между изготовителем и заказчиком кромки могут быть проверены кромочными шаблонами, состоящими из трех элементов для каждой кромки (см. рисунок 4), один элемент с коротким носом для проверки края кромки лопасти и два элемента, которые прикладывают к кромке - один к нагнетательной, другой к засасывающей стороне. Каждый шаблон охватывает приблизительно 20% длины лопасти, но не более 300 мм. Эти шаблоны должны быть изготовлены с допуском 0,25 мм для класса S и 0,35 мм для класса I.

Рисунок 4

11 Допуски на длину сечений лопасти

11.1 Предельные отклонения, приведенные в таблице 6, выражены в процентах отношения диаметра к числу лопастей ().


Таблица 6

Наименование параметра

Класс гребного винта

Предельные отклонения (допуск)

мм,
не менее

мм,
не менее

мм,
не менее

мм,
не менее

Длина сечений лопасти

11.2 Длины сечений каждой лопасти должны быть измерены, по крайней мере, на пяти радиусах для класса S (например: ; ; ; ; ) и на четырех радиусах для классов I, II, III.

12 Допуски на взаимное расположение лопастей, на положение осевых линий и на контуры лопастей

12.1 Положение осевых линий лопастей

Осевую линию наносят на чертеж в виде прямой линии, которая проходит через точку М на нагнетательной стороне лопасти и точку О на оси гребного винта.

Точка М должна быть на цилиндрическом сечении радиуса более чем и, если возможно, вблизи .

Точку выбирают таким образом, чтобы прямая ОМ пересекала наибольшее возможное число сечений лопасти.

Отношение между углами (соответствующим входящей кромке) и (соответствующим выходящей кромке) указывают на чертеже (см. рисунок 5).

указывают размером на чертеже

Рисунок 5

Точку М" на изготовленном гребном винте устанавливают таким образом, чтобы отношение , равное отношению , указанному на чертеже, могло быть достигнуто на рассматриваемом радиусе (см. рисунок 6).

Рисунок 6

Плоскости начала отсчета, проходящие через точку М", используют для проверки контура входящей кромки и откидки лопастей так же, как и углового смещения лопасти*.
_________________
* Определение откидки - по ГОСТ 25815 .

12.2 Допуски на контур входящей кромки

Допуски должны быть рассчитаны для радиусов, указанных в таблице 3, на соответствующих дугах и действительны для длины дуги (см. рисунок 6). Допуски, выраженные в процентах , приведены в таблице 6 ( - диаметр, - число лопастей).

Допуски для длины дуги должны быть равны удвоенным значениям, приведенным в таблице 6, при условии плавности контуров кромок лопасти.

12.3 Допуски на угловое смещение между двумя соседними лопастями

Допуски должны составлять:

±1° - для винтов классов S и I;

±2° - для винтов классов II и III.

13 Допуски на откидку, положение лопасти вдоль оси винта и взаимное расположение осевых линий соседних лопастей

Откидка характеризуется положением осевой линии лопасти РР" (см. рисунок 7). Откидку определяют измерением расстояния до плоскости W, перпендикулярной к оси вращения гребного винта, по крайней мере в точках А, В и С , расположенных на радиусах или ; или ; или .

Рисунок 7

В таблице 7 приведены допуски на расстояния , и , выраженные в процентах диаметра гребного винта , для проверки положения лопастей вдоль оси винта. Те же допуски (а не двойные допуски) применяют, для разностей: для одной и той же лопасти для проверки откидки и - для двух соседних лопастей для проверки относительного осевого положения.


Таблица 7

Наименование параметра

Класс гребного винта

Предельные отклонения, %

Положение лопасти в точках А , В и С (расположенных на радиусах ; и ) no отношению к плоскости W, перпендикулярной к оси винта

14 Обработка поверхности

Состояние поверхности лопастей, выраженное как среднеарифметическое значение отклонения Ra, мкм, должно иметь шероховатость, не превышающую следующих значений:

3 (начиная от ступицы) - для гребных винтов класса S;

6 (начиная от радиуса 0,3) - для гребных винтов класса I;

12 (начиная от радиуса 0,4) - для гребных винтов класса II;

25 (начиная от радиуса 0,5) - для гребных винтов класса III.

15 Статическая балансировка

15.1 Все изготовленные гребные винты должны быть статически отбалансированы.

Максимально допустимую массу балансировочного груза , кг, приложенного на конце лопасти гребного винта, определяют по формуле:

Или , наименьшее из них, (1)


где - масса гребного винта, кг;

- внешний радиус лопасти, м;

- расчетное число оборотов гребного винта в минуту, об/мин;

и - коэффициенты, зависящие от класса гребного винта, приведены в таблице 8.


Таблица 8

Обозначение коэффициента

Класс гребного винта

16 Измерительные приборы

Максимально допустимая погрешность измерительных приборов не должна превышать половины допуска на размер или параметр, а в случае геометрических измерений - 0,5 мм (выбирают наибольшее значение из них).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2007

Редакция документа с учетом
изменений и дополнений подготовлена
АО "Кодекс"