Понижающий импульсный mc34063 внешний полевой ключ. Импульсный преобразователь на MC34063A. Осциллограммы работы в различных точках схемы инвертера

Идея создания этого преобразователя возникла у меня после покупки нетбука Asus EeePC 701 2G. Маленький, удобный, гораздо мобильнее огромных ноутбуков, в общем, красота, да и только. Одна проблема — надо постоянно подзаряжать. А поскольку единственный источник питания, который всегда под рукой — это автомобильный аккумулятор, то естественно возникло желание заряжать нетбук от него. В ходе экспериментов обнаружилось, что сколько нетбуку не дай, — больше 2 ампер он все равно не возьмет, то есть регулятор тока, как в случае зарядки обычных аккумуляторов, нафиг не нужен. Красота, нетбук сам разрулит сколько тока потреблять, следовательно, нужен просто мощный понижающий преобразователь с 12 на 9,5 вольт, способный
выдать нетбуку требуемые 2 ампера.

За основу преобразователя была взята хорошо известная и широко доступная микросхема MC34063. Поскольку в ходе экспериментов типовая схема с внешним биполярным транзистором зарекомендовала себя мягко скажем не очень (греется), было решено прикрутить к этой микрухе p-канальный полевик (MOSFET).

Схема :

Катушку на 4..8 мкГн можно взять со старой материнской платы. Видели, там есть кольца, на которых толстыми проводами по несколько витков намотано? Ищем такую, на которой 8..9 витков одножильным толстым проводом — как раз самое то.

Все элементы схемы рассчитываются по , так же, как и для преобразователя без внешнего транзистора, единственное отличие — V sat нужно посчитать для используемого полевого транзистора. Сделать это очень просто: V sat =R 0 *I, где R 0 — сопротивление транзистора в открытом состоянии, I — протекающий через него ток. Для IRF4905 R 0 =0,02 Ом, что при токе 2,5А дает Vsat=0,05В. Что называется, почувствуйте разницу. Для биполярного транзистора эта величина составляет не менее 1В. Как следствие — рассеиваемая мощность в открытом состоянии в 20 раз меньше и минимальное входное напряжение схемы на 2 вольта меньше!

Как мы помним, для того, чтобы р-канальный полевик открылся — надо подать на затвор отрицательное относительно истока напряжение (то есть подать на затвор напряжение, меньше напряжения питания, т.к. исток у нас подключен к питанию). Для этого нам и нужны резисторы R4, R5. Когда транзистор микросхемы открывается — они образуют делитель напряжения, который и задает напряжение на затворе. Для IRF4905 при напряжении исток-сток 10В для полного открытия транзистора достаточно подать на затвор напряжение на 4 вольта меньше напряжения истока (питания), U GS = -4В (хотя вообще-то правильнее посмотреть по графикам в даташите на транзистор сколько нужно конкретно при вашем токе). Ну и кроме того, сопротивления этих резисторов определяют крутизну фронтов открытия и закрытия полевика (чем меньше сопротивление резисторов — тем круче фронты), а также протекающий через транзистор микросхемы ток (он должен быть не более 1,5А).

Готовый девайс :

В общем-то, радиатор можно было даже поменьше взять — преобразователь греется незначительно. КПД данного устройства около 90% при токе 2А.

Вход соединяете с вилкой для прикуривателя, выход — со штекером для нетбука.

Если не страшно, то можете вместо резистора R sc просто поставить перемычку, как видите, лично я так и сделал, главное ничего не коротнуть, а то бумкнет 🙂

Кроме того, хотелось бы добавить, что типовая методика совсем не идеальна в плане расчётов и ничего не объясняет, поэтому если вы хотите реально понять как всё это работает и как правильно рассчитывается, то рекомендую прочитать .

Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь несколько различных источников питания?

Одно из верных решений это изготовить универсальный источник питания. А в качестве внешнего источника питания применить, в частности, USB-порт персонального компьютера. Не секрет, что в типовом предусмотрено питание для внешних электронных устройств напряжением 5В и токе нагрузки не более 500 мА.

Но, к сожалению, для нормальной работы большинства переносной электронной аппаратуры необходимо 9 или 12В. Решить поставленную задачу поможет специализированная микросхема преобразователь напряжения на MC34063 , которая значительно облегчит изготовление с требуемыми параметрами.

Структурная схема преобразователя mc34063:

Предельные параметры работы MC34063

Описание схемы преобразователя

Ниже представлена принципиальная схема варианта источника питания, позволяющего получить 9В или 12В из 5В USB-порта компьютера.

За основу схемы взята специализированная микросхема MC34063 (ее российский аналог К1156ЕУ5). Преобразователь напряжения MC34063 представляет собой электронную схему управления DC / DC — преобразователем.

Она имеет температурно-компенсированный источник опорного напряжения (ИОН), генератор с изменяемым рабочим циклом, компаратор, схему ограничения по току, выходной каскад и сильноточный ключ. Эта микросхема специально изготовлена для использования в повышающих, понижающих и инвертирующих электронных преобразователях с наименьшим числом элементов.

Выходное напряжение, получаемое в результате работы, устанавливается двумя резисторами R2 и R3. Выбор производится из расчета, что на входе компаратора (вывод 5) должно быть напряжение равное 1,25 В. Вычислить сопротивление резисторов для схемы можно используя несложную формулу:

Uвых= 1,25(1+R3/R2)

Зная необходимое выходное напряжение и сопротивление резистора R3, можно довольно легко определить сопротивление резистора R2.

Так как выходное напряжение определяется , можно значительно улучшить схему, включив в схему переключатель, позволяющий получать всевозможные значения по мере необходимости. Ниже приведен вариант преобразователя MC34063 на два выходных напряжения (9 и 12 В)

Эта схема является универсальным преобразователем напряжения, который идеально подходит например для изготовления . Преобразователь работает на базе популярной и недорогой и для работы требует лишь несколько внешних компонентов. В схеме применен усиливающий ключ - высоковольтный полевой транзистор MOSFET STP6NK60Z. Устройство предназначено для входного питания напряжением 12 В. Выходное напряжения порядка 150 В с максимальным током нагрузки 3 мА.

Схема проекта

Основой преобразователя является многим уже хорошо известная микросхема MC34063, которая представляет собой чип-контроллер, содержащий основные компоненты, необходимые для изготовления преобразователей DC-DC. Система компенсируется термически, имеет источник опорного напряжения, компаратор и генератор с регулировкой.

Конденсатор C3 (1nF) определяет частоту внутреннего генератора. При такой емкости частота колебаний будет порядка 40 кГц. Конденсатор C1 (470uF/25V) фильтрует напряжение питания, а C2 (1nF) фильтрует напряжение, отвечающее требованиям внутреннего компаратора с делителя R1 (10k) к R3 (1М) + PR1 (1М). На ножке 5 микросхемы U1 при стабильной работе держится напряжение 1.25 В. И теперь считаем теоретический диапазон выходных напряжений: 125 В (потенциометр к 0) до 250 В (потенциометр на максимальное значение).

Резистор R2 (2,2 Ома) небольшого сопротивления работает как датчик тока, ограничивая амплитуду тока на входе, а, следовательно, энергоэффективность системы. Преобразователь работает в двух циклах:

  1. В первом, когда транзистор T2 (STP6NK60Z) замкнут, энергия накапливается в дросселе L1 (470uH).
  2. Во втором цикле ключ будет отключен и высокое индуцированное напряжение в катушке, заряжает конденсатор C4 (MKPX2 100nF/275VAC) через диод D2 (UF4007). Светодиод препятствует разрядке конденсатора.

Печатная плата не имеет перемычек, а ее монтаж очень простой. Порядок пайки элементов, в принципе, любой, однако стоит начать с самых маленьких. Следует обратить особое внимание на качество сборки, особенно это касается делителя обратной связи. Без него выходное напряжение может вырасти до больших значений, повредив конденсатор и даже ключевой транзистор. Выходную мощность преобразователя можно увеличить, применив резистор R2 меньшего значения. При величине этого резистора на уровне 1 Ом, сила выходного тока вырастет примерно до 8 мА.

MC34063 представляет собой достаточно распространенный тип микроконтроллера для построения преобразователей напряжения как с низкого уровня в высокий, так и с высокого в низкий. Особенности микросхемы заключаются в ее технических характеристиках и рабочих показателях. Устройство хорошо держит нагрузки с током коммутации до 1,5 А, что говорит о широкой сфере его использования в различных импульсных преобразователях с высокими практическими характеристиками.

Описание микросхемы

Стабилизация и преобразование напряжения — это немаловажная функция, которая используется во многих устройствах. Это всевозможные регулируемые источники питания, преобразующие схемы и высококачественные встраиваемые блоки питания. Большинство бытовой электроники сконструированного именно на этой МС, потому что она имеет высокие рабочие характеристики и без проблем коммутирует достаточно большой ток.

MC34063 имеет встроенный осциллятор, поэтому для работы устройства и старта преобразования напряжения в различные уровни достаточно обеспечить начальное смещение путем подключения конденсатора ёмкостью 470пФ. Этот контроллер пользуется огромной популярностью среди большого количества радиолюбителей. Микросхема хорошо работает во многих схемах. А имея несложную топологию и простое техническое устройство, можно легко разобраться с принципом ее работы.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Схема включения на понижение напряжения и стабилизации

Из схемы видно, что ток в выходном транзисторе ограничивается резистором R1, а времязадающим компонентов для установки необходимой частоты преобразования является конденсатор C2. Индуктивность L1 накапливает в себе энергию при открытом транзисторе, а по его закрытию разряжается через диод на выходной конденсатор. Коэффициент преобразования зависит от соотношения сопротивлений резисторов R3 и R2.

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением. Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности. А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей. А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1. Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию. Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

Другие режимы работы

Кроме режимов работы на понижение и стабилизацию, также довольно часто применяется повышающий. отличается тем, что индуктивность находится не на выходе. Через нее протекает ток в нагрузку при закрытом ключе, который отпираясь, подаёт на нижний вывод индуктивности отрицательное напряжение.

Диод, в свою очередь, обеспечивает разряд индуктивности на нагрузку в одном направлении. Поэтому при открытом ключе на нагрузке формируется 12 В от источника питания и максимальный ток, а при закрытом на выходном конденсаторе оно повышается до 28В. КПД схемы на повышение составляет как минимум 83%. Схемной особенностью при работе в таком режиме является плавное включение выходного транзистора, что обеспечивается ограничением тока базы посредством дополнительного резистора, подключенного к 8 выводу МС. Тактовая частота работы преобразователя задаётся конденсатором небольшой ёмкости, преимущественно 470пФ, при этом она составляет 100кГц.

Выходное напряжение определяется по следующей формуле:

Uвых=1,25*R3 *(R2+R3)

Используя вышеуказанную схему включения микросхемы МС34063А, можно изготовить повышающий преобразователь напряжения с питанием от USB до 9, 12 и более вольт в зависимости от параметров резистора R3. Чтобы провести детальный расчет характеристик устройства, можно воспользоваться специальным калькулятором. Если R2 составляет 2,4кОм, а R3 15кОм, то схема будет преобразовать 5В в 12В.

Схема на MC34063A повышения напряжения с внешним транзистором

В представленной схеме использован полевой транзистор . Но в ней допущена ошибка. На биполярном транзисторе необходимо поменять местами К-Э. А ниже представлена схема из описания. Внешний транзистор выбирается исходя из тока коммутации и выходной мощности.

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2. Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Зарядное устройство на MC34063

Контроллер MC34063 универсален. Кроме, источников питания она может быть применена для конструирования зарядного устройства для телефонов с выходным напряжением 5В. Ниже представлена схема реализации устройства. Ее принцип работы объясняется как и в случае с обычным преобразованием понижающего типа. Выходной ток заряда аккумулятора составляет до 1А с запасом 30%. Для его увеличения необходимо использовать внешний транзистор, например, КТ817 или любой другой.

Микросхема представляет собой универсальный импульсный преобразователь, на котором можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А.

Ниже к вашему вниманию представлена схема понижающего преобразователя с выходным напряжением 5V и током 500mA.

Схема преобразователя MC34063A

Набор деталей

Микросхема: MC34063A
Конденсаторы электролитические: C2 = 1000мФ/10В; C3 = 100мФ/25В
Конденсаторы металлопленочные: C1 = 431пФ; C4 =0.1мФ
Резисторы: R1 = 0.3 ом; R2 = 1к; R3 = 3к
Диод: D1 = 1N5819
Дроссель: L1 = 220uH

C1 – емкость частотнозадающего конденсатора преобразователя.
R1 – резистор который отключит микросхему при превышении тока.
C2 – конденсатор фильтра. Чем он больше тем меньше пульсаций, должен быть LOW ESR типа.
R1, R2 – делитель напряжения который задает выходное напряжение.
D1 – диод должен быть сверхбыстрым (ultrafast) или диодом шоттки с допустимым обратным напряжение не менее чем в 2 раза превышающим выходное.
Напряжение питания микросхемы 9 - 15 вольт, а входной ток не должен превышать 1.5А

Печатная плата MC34063A

Два варианта печатнных плат



Здесь можно скачать универсальный калькулятор